E. Ravera , A. Cavalieri , E. Ciarrocchi , D. Del Sarto , F. Di Martino , M. Massa , L. Masturzo , A. Moggi , M. Morrocchi , J.H. Pensavalle , M.G. Bisogni
{"title":"A new calibration method of an array of plastic scintillating fibers for dosimetry in electron FLASH Radiotherapy","authors":"E. Ravera , A. Cavalieri , E. Ciarrocchi , D. Del Sarto , F. Di Martino , M. Massa , L. Masturzo , A. Moggi , M. Morrocchi , J.H. Pensavalle , M.G. Bisogni","doi":"10.1016/j.radmeas.2024.107254","DOIUrl":null,"url":null,"abstract":"<div><p>The challenge of saturation at the high dose rate employed in FLASH radiotherapy and the lack of real-time 2D and 3D dosimeters create an opportunity for the use of plastic scintillators. This study presents the development of an online dosimetric system designed for electron FLASH radiotherapy applications: an array of dosimeters, made by plastic scintillating fibers, each one coupled to an optical fiber, was evaluated as a proof-of-concept using a LINAC providing 9 MeV electrons, at the Centro Pisano Flash Radiotherapy. Signal linearity was established up to 10 Gy/pulse, with a pulse duration of <span><math><mrow><mn>4</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span>. We also measured the signal variation across the beam profile using different applicators (30 mm, 50 mm and 100 mm in diameters) and we developed a geometrical model that accounts for the different amount of dose absorbed by the plastic scintillating fibers and the optical fibers. By fitting this model to the data, we estimated both the inter-calibration factors of the dosimeters, as well as the intrinsic ratio (i.e. for equal irradiated volumes) of spurious light in the optical fiber respect to the scintillation, which is equal to (4.7<span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><msub><mrow><mn>1</mn></mrow><mrow><mi>s</mi><mi>t</mi><mi>a</mi><mi>t</mi><mo>.</mo></mrow></msub><mo>±</mo><mn>1</mn><mo>.</mo><msub><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi><mo>.</mo></mrow></msub></mrow></math></span>) %.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724002026/pdfft?md5=b5cd5ee35a1465ab402e5f67ef4b9fd4&pid=1-s2.0-S1350448724002026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge of saturation at the high dose rate employed in FLASH radiotherapy and the lack of real-time 2D and 3D dosimeters create an opportunity for the use of plastic scintillators. This study presents the development of an online dosimetric system designed for electron FLASH radiotherapy applications: an array of dosimeters, made by plastic scintillating fibers, each one coupled to an optical fiber, was evaluated as a proof-of-concept using a LINAC providing 9 MeV electrons, at the Centro Pisano Flash Radiotherapy. Signal linearity was established up to 10 Gy/pulse, with a pulse duration of . We also measured the signal variation across the beam profile using different applicators (30 mm, 50 mm and 100 mm in diameters) and we developed a geometrical model that accounts for the different amount of dose absorbed by the plastic scintillating fibers and the optical fibers. By fitting this model to the data, we estimated both the inter-calibration factors of the dosimeters, as well as the intrinsic ratio (i.e. for equal irradiated volumes) of spurious light in the optical fiber respect to the scintillation, which is equal to (4.7) %.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.