I.I. Klimovskikh, S.V. Eremeev, D.A. Estyunin, S.O. Filnov, K. Shimada, V.A. Golyashov, N.Yu. Solovova, O.E. Tereshchenko, K.A. Kokh, A.S. Frolov, A.I. Sergeev, V.S. Stolyarov, V. Mikšić Trontl, L. Petaccia, G. Di Santo, M. Tallarida, J. Dai, S. Blanco-Canosa, T. Valla, A.M. Shikin, E.V. Chulkov
{"title":"Interfacing two-dimensional and magnetic topological insulators: Bi bilayer on MnBi[formula omitted]Te[formula omitted]-family materials","authors":"I.I. Klimovskikh, S.V. Eremeev, D.A. Estyunin, S.O. Filnov, K. Shimada, V.A. Golyashov, N.Yu. Solovova, O.E. Tereshchenko, K.A. Kokh, A.S. Frolov, A.I. Sergeev, V.S. Stolyarov, V. Mikšić Trontl, L. Petaccia, G. Di Santo, M. Tallarida, J. Dai, S. Blanco-Canosa, T. Valla, A.M. Shikin, E.V. Chulkov","doi":"10.1016/j.mtadv.2024.100511","DOIUrl":null,"url":null,"abstract":"Meeting of non-trivial topology with magnetism results in novel phases of matter, such as quantum anomalous Hall (QAH) or axion insulator phases. Even more exotic states with high and tunable Chern numbers are expected at the contact of intrinsic magnetic topological insulators (IMTIs) and 2D topological insulators (TIs). Here we synthesize a heterostructures composed of 2D TI and 3D IMTIs, specifically of bismuth bilayer on top of MnBiTe-family of compounds and study their electronic properties by means of angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT). The epitaxial interface is characterized by hybridized Bi and IMTI electronic states. The Bi bilayer-derived states on different members of MnBiTe-family of materials are similar, except in the region of mixing with the topological surface states of the substrate. In that region, the new, substrate dependent interface Dirac state is observed. Our calculations show rich interface phases with emergence of exchange split 1D edge states, making the Bi/IMTI heterostructures promising playground for observation of novel members in the family of quantum Hall effects.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"30 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100511","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Meeting of non-trivial topology with magnetism results in novel phases of matter, such as quantum anomalous Hall (QAH) or axion insulator phases. Even more exotic states with high and tunable Chern numbers are expected at the contact of intrinsic magnetic topological insulators (IMTIs) and 2D topological insulators (TIs). Here we synthesize a heterostructures composed of 2D TI and 3D IMTIs, specifically of bismuth bilayer on top of MnBiTe-family of compounds and study their electronic properties by means of angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT). The epitaxial interface is characterized by hybridized Bi and IMTI electronic states. The Bi bilayer-derived states on different members of MnBiTe-family of materials are similar, except in the region of mixing with the topological surface states of the substrate. In that region, the new, substrate dependent interface Dirac state is observed. Our calculations show rich interface phases with emergence of exchange split 1D edge states, making the Bi/IMTI heterostructures promising playground for observation of novel members in the family of quantum Hall effects.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.