Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ke Yan, Yan Zou, Liang-Xue Bao, Qi Xia, Ling-Yi Meng, Hai-Chen Lin, Hui-Xin Chen, Hong-Jun Yue
{"title":"Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery","authors":"Ke Yan, Yan Zou, Liang-Xue Bao, Qi Xia, Ling-Yi Meng, Hai-Chen Lin, Hui-Xin Chen, Hong-Jun Yue","doi":"10.1007/s12598-024-02894-4","DOIUrl":null,"url":null,"abstract":"<p>Lithium/fluorinated carbon (Li/CF<sub><i>x</i></sub>) batteries are greatly limited in their applications mostly due to poor rate performances. In this study, N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources, and the resulting product was then utilized as a precursor for CF<sub><i>x</i></sub>. The resulting fluorinated biomass carbon has a high degree of fluorination, exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates. During the fluorination process, N,P-containing functional groups were removed from the crystalline lattice in the basal plane. This facilitates the formation of a defect-rich carbon matrix, enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds. Additionally, the abundant defects and porous structure promote Li<sup>+</sup> diffusion. Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li<sup>+</sup> migration, enhancing Li<sup>+</sup> transport efficiency. The prepared CF<sub><i>x</i></sub> delivers material with a maximum specific capacity of 919 mAh·g<sup>−1</sup>, while maintaining a specific capacity of 702 mAh·g<sup>−1</sup> at a high discharge current density of 20C (with a capacity retention rate of 76.4%). In this study, fluorinated N,P co-doped biomass carbon, exhibiting ultrahigh capacity and high-rate performance, was prepared for the first time, which can potentially advance the commercialization of CF<sub><i>x</i></sub>.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02894-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium/fluorinated carbon (Li/CFx) batteries are greatly limited in their applications mostly due to poor rate performances. In this study, N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources, and the resulting product was then utilized as a precursor for CFx. The resulting fluorinated biomass carbon has a high degree of fluorination, exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates. During the fluorination process, N,P-containing functional groups were removed from the crystalline lattice in the basal plane. This facilitates the formation of a defect-rich carbon matrix, enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds. Additionally, the abundant defects and porous structure promote Li+ diffusion. Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li+ migration, enhancing Li+ transport efficiency. The prepared CFx delivers material with a maximum specific capacity of 919 mAh·g−1, while maintaining a specific capacity of 702 mAh·g−1 at a high discharge current density of 20C (with a capacity retention rate of 76.4%). In this study, fluorinated N,P co-doped biomass carbon, exhibiting ultrahigh capacity and high-rate performance, was prepared for the first time, which can potentially advance the commercialization of CFx.

Graphical abstract

Abstract Image

作为锂/氟碳电池正极材料的具有高倍率性能的氟化 N、P 共掺生物质碳
锂/氟化碳(Li/CFx)电池的应用受到很大限制,主要原因是其速率性能较差。本研究以三聚氰胺和植酸为掺杂源,合成了 N、P 共掺杂的生物质碳,并将所得产物用作 CFx 的前驱体。所得到的氟化生物质碳具有很高的氟化程度,超过了商用氟化石墨的比容量,同时在高放电速率下也表现出优异的性能。在氟化过程中,基底面晶格中含有的 N、P 官能团被去除。这有利于形成富含缺陷的碳基体,通过改善氟化活性位点和获得更高活性的半离子键来提高 F/C 比。此外,丰富的缺陷和多孔结构也促进了 Li+ 的扩散。密度泛函理论计算表明,掺杂改性可有效降低 Li+ 迁移的能量势垒,提高 Li+ 传输效率。所制备的 CFx 材料的最大比容量为 919 mAh-g-1,同时在 20C 的高放电电流密度下仍能保持 702 mAh-g-1 的比容量(容量保持率为 76.4%)。本研究首次制备出了具有超高容量和高速率性能的氟化 N、P 共掺生物质碳,有望推动 CFx 的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信