Changji Xu, Wenbin He, Zhuojia Xie, Zhengguang Zou
{"title":"Structural, Magnetic, and Magnetocaloric Effects of La0.8Sr0.2MnO3 Manganites by Doping with f-Orbital Ions Through First-Principles Calculations","authors":"Changji Xu, Wenbin He, Zhuojia Xie, Zhengguang Zou","doi":"10.1007/s11664-024-11312-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, La<sub>0.63</sub>Sr<sub>0.2</sub>Nd<sub>0.17</sub>MnO<sub>3</sub> was synthesized by the sol-gel method, and its structural, morphological, magnetic, and magnetocaloric effects were investigated. The structural properties were analyzed by x-ray diffraction (XRD), and scanning electron microscopy (SEM) was used to characterize the morphology. An integrated magnetic measurement system was used to determine the magnetic properties. La<sub>0.63</sub>Sr<sub>0.2</sub>Nd<sub>0.17</sub>MnO<sub>3</sub> crystallized in a hexagonal crystal system with space group <i>R</i>-3<i>c</i>. This was also confirmed by Rietveld refinement of the x-ray data from La<sub>0.63</sub>Sr<sub>0.2</sub>Nd<sub>0.17</sub>MnO<sub>3</sub>. With the doping of Nd<sup>3+</sup>, the cell volume decreases, which can be explained by the angles and bond lengths of the bonds between the Mn and O ions and the distortion of the lattice. Near the Curie temperature, La<sub>0.63</sub>Sr<sub>0.2</sub>Nd<sub>0.17</sub>MnO<sub>3</sub> exhibits significant magnetocaloric effects. The magnetic study of La<sub>0.63</sub>Sr<sub>0.2</sub>Nd<sub>0.17</sub>MnO<sub>3</sub> suggests that the transition from the paramagnetic to ferromagnetic phase can occur near the Curie temperature. The maximum magnetic entropy change and relative cooling power (RCP) of La<sub>0.63</sub>Sr<sub>0.2</sub>Nd<sub>0.17</sub>MnO<sub>3</sub> (298 K, 3 T) are 2.70 J/(kg K) and 135 (J/kg), respectively. The effect of <i>f</i>-orbitals on the magnetic properties of La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> was investigated by first-principles calculations in density functional theory. Thus, it can be concluded that the magnetocaloric effects of the material after doping with <i>f</i>-orbital ions (Nd<sup>3+</sup>) is enhanced compared to La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11312-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, La0.63Sr0.2Nd0.17MnO3 was synthesized by the sol-gel method, and its structural, morphological, magnetic, and magnetocaloric effects were investigated. The structural properties were analyzed by x-ray diffraction (XRD), and scanning electron microscopy (SEM) was used to characterize the morphology. An integrated magnetic measurement system was used to determine the magnetic properties. La0.63Sr0.2Nd0.17MnO3 crystallized in a hexagonal crystal system with space group R-3c. This was also confirmed by Rietveld refinement of the x-ray data from La0.63Sr0.2Nd0.17MnO3. With the doping of Nd3+, the cell volume decreases, which can be explained by the angles and bond lengths of the bonds between the Mn and O ions and the distortion of the lattice. Near the Curie temperature, La0.63Sr0.2Nd0.17MnO3 exhibits significant magnetocaloric effects. The magnetic study of La0.63Sr0.2Nd0.17MnO3 suggests that the transition from the paramagnetic to ferromagnetic phase can occur near the Curie temperature. The maximum magnetic entropy change and relative cooling power (RCP) of La0.63Sr0.2Nd0.17MnO3 (298 K, 3 T) are 2.70 J/(kg K) and 135 (J/kg), respectively. The effect of f-orbitals on the magnetic properties of La0.8Sr0.2MnO3 was investigated by first-principles calculations in density functional theory. Thus, it can be concluded that the magnetocaloric effects of the material after doping with f-orbital ions (Nd3+) is enhanced compared to La0.8Sr0.2MnO3.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.