A Sensitivity Analysis of Cellular Automata and Heterogeneous Topology Networks: Partially-Local Cellular Automata and Homogeneous Homogeneous Random Boolean Networks

Tom Eivind Glover, Ruben Jahren, Francesco Martinuzzi, Pedro Gonçalves Lind, Stefano Nichele
{"title":"A Sensitivity Analysis of Cellular Automata and Heterogeneous Topology Networks: Partially-Local Cellular Automata and Homogeneous Homogeneous Random Boolean Networks","authors":"Tom Eivind Glover, Ruben Jahren, Francesco Martinuzzi, Pedro Gonçalves Lind, Stefano Nichele","doi":"arxiv-2407.18017","DOIUrl":null,"url":null,"abstract":"Elementary Cellular Automata (ECA) are a well-studied computational universe\nthat is, despite its simple configurations, capable of impressive computational\nvariety. Harvesting this computation in a useful way has historically shown\nitself to be difficult, but if combined with reservoir computing (RC), this\nbecomes much more feasible. Furthermore, RC and ECA enable energy-efficient AI,\nmaking the combination a promising concept for Edge AI. In this work, we\ncontrast ECA to substrates of Partially-Local CA (PLCA) and Homogeneous\nHomogeneous Random Boolean Networks (HHRBN). They are, in comparison, the\ntopological heterogeneous counterparts of ECA. This represents a step from ECA\ntowards more biological-plausible substrates. We analyse these substrates by\ntesting on an RC benchmark (5-bit memory), using Temporal Derrida plots to\nestimate the sensitivity and assess the defect collapse rate. We find that,\ncounterintuitively, disordered topology does not necessarily mean disordered\ncomputation. There are countering computational \"forces\" of topology\nimperfections leading to a higher collapse rate (order) and yet, if accounted\nfor, an increased sensitivity to the initial condition. These observations\ntogether suggest a shrinking critical range.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elementary Cellular Automata (ECA) are a well-studied computational universe that is, despite its simple configurations, capable of impressive computational variety. Harvesting this computation in a useful way has historically shown itself to be difficult, but if combined with reservoir computing (RC), this becomes much more feasible. Furthermore, RC and ECA enable energy-efficient AI, making the combination a promising concept for Edge AI. In this work, we contrast ECA to substrates of Partially-Local CA (PLCA) and Homogeneous Homogeneous Random Boolean Networks (HHRBN). They are, in comparison, the topological heterogeneous counterparts of ECA. This represents a step from ECA towards more biological-plausible substrates. We analyse these substrates by testing on an RC benchmark (5-bit memory), using Temporal Derrida plots to estimate the sensitivity and assess the defect collapse rate. We find that, counterintuitively, disordered topology does not necessarily mean disordered computation. There are countering computational "forces" of topology imperfections leading to a higher collapse rate (order) and yet, if accounted for, an increased sensitivity to the initial condition. These observations together suggest a shrinking critical range.
蜂窝自动机和异构拓扑网络的敏感性分析:部分局部蜂窝自动机与同构随机布尔网络
基本蜂窝自动机(ECA)是一种经过深入研究的计算宇宙,尽管其配置简单,却具有令人印象深刻的计算多样性。从历史上看,以有用的方式获取这种计算本身就很困难,但如果与水库计算(RC)相结合,就会变得更加可行。此外,RC 和 ECA 还能实现高能效的人工智能,使其成为边缘人工智能的一个前景广阔的概念。在这项工作中,我们将 ECA 与部分局部 CA(PLCA)和同构随机布尔网络(HHRBN)进行了对比。相比之下,它们是 ECA 的拓扑异构对应物。这代表着从 ECA 向更符合生物学原理的基底迈进了一步。我们通过在 RC 基准(5 位内存)上进行测试来分析这些基底,使用时态德里达图来估计灵敏度和评估缺陷崩溃率。我们发现,与直觉相反,拓扑结构无序并不一定意味着计算无序。拓扑不完美的计算 "力量 "会导致更高的坍缩率(阶次),但如果考虑到这一点,对初始条件的敏感性也会增加。这些现象共同表明临界范围正在缩小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信