Adaptive Bregman–Kaczmarz: an approach to solve linear inverse problems with independent noise exactly

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lionel Tondji, Idriss Tondji and Dirk Lorenz
{"title":"Adaptive Bregman–Kaczmarz: an approach to solve linear inverse problems with independent noise exactly","authors":"Lionel Tondji, Idriss Tondji and Dirk Lorenz","doi":"10.1088/1361-6420/ad5fb1","DOIUrl":null,"url":null,"abstract":"We consider the block Bregman–Kaczmarz method for finite dimensional linear inverse problems. The block Bregman–Kaczmarz method uses blocks of the linear system and performs iterative steps with these blocks only. We assume a noise model that we call independent noise, i.e. each time the method performs a step for some block, one obtains a noisy sample of the respective part of the right-hand side which is contaminated with new noise that is independent of all previous steps of the method. One can view these noise models as making a fresh noisy measurement of the respective block each time it is used. In this framework, we are able to show that a well-chosen adaptive stepsize of the block Bregman–Kaczmarz method is able to converge to the exact solution of the linear inverse problem. The plain form of this adaptive stepsize relies on unknown quantities (like the Bregman distance to the solution), but we show a way how these quantities can be estimated purely from given data. We illustrate the finding in numerical experiments and confirm that these heuristic estimates lead to effective stepsizes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad5fb1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the block Bregman–Kaczmarz method for finite dimensional linear inverse problems. The block Bregman–Kaczmarz method uses blocks of the linear system and performs iterative steps with these blocks only. We assume a noise model that we call independent noise, i.e. each time the method performs a step for some block, one obtains a noisy sample of the respective part of the right-hand side which is contaminated with new noise that is independent of all previous steps of the method. One can view these noise models as making a fresh noisy measurement of the respective block each time it is used. In this framework, we are able to show that a well-chosen adaptive stepsize of the block Bregman–Kaczmarz method is able to converge to the exact solution of the linear inverse problem. The plain form of this adaptive stepsize relies on unknown quantities (like the Bregman distance to the solution), but we show a way how these quantities can be estimated purely from given data. We illustrate the finding in numerical experiments and confirm that these heuristic estimates lead to effective stepsizes.
自适应 Bregman-Kaczmarz:精确解决具有独立噪声的线性逆问题的方法
我们考虑用块 Bregman-Kaczmarz 方法来解决有限维线性逆问题。块 Bregman-Kaczmarz 方法使用线性系统的块,并只对这些块执行迭代步骤。我们假定一种称为独立噪声的噪声模型,即每次该方法对某个区块执行一个步骤时,都会获得右侧相应部分的噪声样本,该样本受到与该方法之前所有步骤无关的新噪声的污染。我们可以将这些噪声模型视为每次使用时对相应区块进行的全新噪声测量。在此框架下,我们能够证明,块 Bregman-Kaczmarz 方法的自适应步长经过精心选择后,能够收敛到线性逆问题的精确解。这种自适应步长的普通形式依赖于未知量(如到解的布雷格曼距离),但我们展示了一种方法,即如何纯粹根据给定数据估算这些量。我们在数值实验中说明了这一发现,并证实这些启发式估计能带来有效的步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信