{"title":"The host behaviour of 9-phenyl-9 H-xanthene derivatives in mixtures of cyclohexanone and the methylcyclohexanone isomers","authors":"Brandon Barnardo, Benita Barton, Eric C Hosten","doi":"10.1007/s10847-024-01256-y","DOIUrl":null,"url":null,"abstract":"<div><p>Here we report on the host behaviour of compounds <i>N</i>,<i> N</i>’-bis(9-phenyl-9-xanthenyl)propane-1,3-diamine (<b>H1</b>) and <i>N</i>,<i> N</i>’-bis(9-phenyl-9-xanthenyl)butane-1,4-diamine (<b>H2</b>) in the presence of potential guest species cyclohexanone (CYC) and 2-, 3- and 4-methylcyclohexanone (2MeCYC, 3MeCYC and 4MeCYC). <b>H1</b> only formed a complex with CYC, whilst all four guest solvents were enclathrated by <b>H2</b>. Thermal analyses in conjunction with SCXRD experiments revealed that more energy was required to remove guest species from the crystals of their complexes when they were housed in discrete cavities compared with guest molecules retained in channels. Only in <b>H1</b>·CYC was identified an intramolecular (host)N‒H···N(host) hydrogen bond, while complexes <b>H2</b>·2(CYC), <b>H2</b>·2(3MeCYC) and <b>H2</b>·4MeCYC all experienced strong (host)N‒H···O(guest) hydrogen bonds which assisted in retention of the guests in the complexes; this interaction type was absent in both <b>H1</b>·CYC and <b>H2</b>·2(2MeCYC). Hirshfeld surface analyses demonstrated that the amounts of (guest)O···H(host) interatomic interactions were comparable and ranged between 11.1 and 13.9%. Guest competition experiments showed that <b>H2</b> possessed an affinity for, more usually, 3MeCYC, despite the complex <b>H2</b>·2(3MeCYC) being the least thermally stable one. Finally, it was established that <b>H1</b> and <b>H2</b> would not be appropriate host compounds for separations of mixed cyclohexanones through supramolecular chemistry strategies.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"104 11-12","pages":"597 - 609"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10847-024-01256-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-024-01256-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Here we report on the host behaviour of compounds N, N’-bis(9-phenyl-9-xanthenyl)propane-1,3-diamine (H1) and N, N’-bis(9-phenyl-9-xanthenyl)butane-1,4-diamine (H2) in the presence of potential guest species cyclohexanone (CYC) and 2-, 3- and 4-methylcyclohexanone (2MeCYC, 3MeCYC and 4MeCYC). H1 only formed a complex with CYC, whilst all four guest solvents were enclathrated by H2. Thermal analyses in conjunction with SCXRD experiments revealed that more energy was required to remove guest species from the crystals of their complexes when they were housed in discrete cavities compared with guest molecules retained in channels. Only in H1·CYC was identified an intramolecular (host)N‒H···N(host) hydrogen bond, while complexes H2·2(CYC), H2·2(3MeCYC) and H2·4MeCYC all experienced strong (host)N‒H···O(guest) hydrogen bonds which assisted in retention of the guests in the complexes; this interaction type was absent in both H1·CYC and H2·2(2MeCYC). Hirshfeld surface analyses demonstrated that the amounts of (guest)O···H(host) interatomic interactions were comparable and ranged between 11.1 and 13.9%. Guest competition experiments showed that H2 possessed an affinity for, more usually, 3MeCYC, despite the complex H2·2(3MeCYC) being the least thermally stable one. Finally, it was established that H1 and H2 would not be appropriate host compounds for separations of mixed cyclohexanones through supramolecular chemistry strategies.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.