Implementation of a slope stability method in the CRITERIA-1D agro-hydrological modeling scheme

IF 5.8 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
G. Sannino, F. Tomei, M. Bittelli, M. Bordoni, C. Meisina, R. Valentino
{"title":"Implementation of a slope stability method in the CRITERIA-1D agro-hydrological modeling scheme","authors":"G. Sannino, F. Tomei, M. Bittelli, M. Bordoni, C. Meisina, R. Valentino","doi":"10.1007/s10346-024-02313-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the implementation of a slope stability method for rainfall-induced shallow landslides in CRITERIA-1D, which is an agro-hydrological model based on Richards’ equation for transient infiltration and redistribution processes. CRITERIA-1D can simulate the presence and development of roots and canopies over space and time, the regulation of transpiration activity based on real meteorological data, and the evaporation reduction caused by canopies. The slope can be considered composed of a multi-layered soil, leading to the possibility of simulating the bedrock and of setting an initial water table level. CRITERIA-1D can consider different soil horizons characterized by different hydraulic conductivities and soil water retention curves, thus allowing the simulation of capillarity barriers. The validation of the proposed physically based slope stability model was conducted through the simulation of the collected water content and water potential data of an experimental slope. The monitored slope is located close to Montuè, in the north-eastern sector of Oltrepò Pavese (northern Apennines—Italy). Just close to the monitoring station, a shallow landslide occurred in 2014 at a depth of around 100 cm. The results show the utility of agro-hydrological modeling schemes in modeling the antecedent soil moisture condition and in reducing the overestimation of landslides events detection, which is an issue for early warning systems and slope management related to rainfall-induced shallow landslides. The presented model can be used also to test different bioengineering solutions for slope stabilization, especially when data about rooting systems and plant physiology are known.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"16 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02313-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the implementation of a slope stability method for rainfall-induced shallow landslides in CRITERIA-1D, which is an agro-hydrological model based on Richards’ equation for transient infiltration and redistribution processes. CRITERIA-1D can simulate the presence and development of roots and canopies over space and time, the regulation of transpiration activity based on real meteorological data, and the evaporation reduction caused by canopies. The slope can be considered composed of a multi-layered soil, leading to the possibility of simulating the bedrock and of setting an initial water table level. CRITERIA-1D can consider different soil horizons characterized by different hydraulic conductivities and soil water retention curves, thus allowing the simulation of capillarity barriers. The validation of the proposed physically based slope stability model was conducted through the simulation of the collected water content and water potential data of an experimental slope. The monitored slope is located close to Montuè, in the north-eastern sector of Oltrepò Pavese (northern Apennines—Italy). Just close to the monitoring station, a shallow landslide occurred in 2014 at a depth of around 100 cm. The results show the utility of agro-hydrological modeling schemes in modeling the antecedent soil moisture condition and in reducing the overestimation of landslides events detection, which is an issue for early warning systems and slope management related to rainfall-induced shallow landslides. The presented model can be used also to test different bioengineering solutions for slope stabilization, especially when data about rooting systems and plant physiology are known.

Abstract Image

在 CRITERIA-1D 农业水文模拟方案中实施斜坡稳定性方法
CRITERIA-1D 是一种基于理查兹方程的农业水文模型,用于模拟瞬态渗透和再分布过程。CRITERIA-1D 可以模拟根系和树冠在空间和时间上的存在和发展、基于真实气象数据的蒸腾活动调节以及树冠导致的蒸发减少。斜坡可视为由多层土壤组成,因此可以模拟基岩并设定初始地下水位。CRITERIA-1D 可以考虑不同的土壤层,这些土壤层具有不同的导水性和土壤保水曲线,因此可以模拟毛细管障碍。通过模拟实验斜坡的含水量和水势数据,对所提出的基于物理的斜坡稳定性模型进行了验证。被监测的斜坡位于意大利亚平宁山脉北部帕韦塞山东北部的蒙图埃附近。就在监测站附近,2014 年曾发生过一次深度约为 100 厘米的浅层滑坡。研究结果表明,农业水文建模方案在模拟前土壤湿度条件和减少高估滑坡事件检测方面具有实用性,而这正是与降雨引发的浅层滑坡相关的预警系统和边坡管理所面临的问题。所提出的模型还可用于测试不同的边坡稳定生物工程解决方案,特别是在已知根系系统和植物生理数据的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Landslides
Landslides 地学-地球科学综合
CiteScore
13.60
自引率
14.90%
发文量
191
审稿时长
>12 weeks
期刊介绍: Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides. - Landslide dynamics, mechanisms and processes - Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment - Geological, Geotechnical, Hydrological and Geophysical modeling - Effects of meteorological, hydrological and global climatic change factors - Monitoring including remote sensing and other non-invasive systems - New technology, expert and intelligent systems - Application of GIS techniques - Rock slides, rock falls, debris flows, earth flows, and lateral spreads - Large-scale landslides, lahars and pyroclastic flows in volcanic zones - Marine and reservoir related landslides - Landslide related tsunamis and seiches - Landslide disasters in urban areas and along critical infrastructure - Landslides and natural resources - Land development and land-use practices - Landslide remedial measures / prevention works - Temporal and spatial prediction of landslides - Early warning and evacuation - Global landslide database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信