Density functional theory and ReaxFF MD study on steam-induced nitrogen migration mechanism during char gasification

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS
{"title":"Density functional theory and ReaxFF MD study on steam-induced nitrogen migration mechanism during char gasification","authors":"","doi":"10.1016/j.joei.2024.101763","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of nitrogen-containing species during char gasification is crucial for emission of nitrogenous pollutants. In this work, the detailed nitrogen migration mechanism during char gasification is studied. Density functional theory (DFT) coupled with ReaxFF MD methods are used to conduct an in-depth analysis on the intrinsic reaction mechanism during Char(N) and steam interaction. DFT results show that orbital electrons of carbon atoms on char surface are driven towards nitrogen atoms by nitrogen functional groups. The electron density of adjacent carbon atoms is weakened, which has a positive charge. Orbital electron properties show that the band energy gaps of three Char(N) models are 3.063 eV, 1.092 eV and 3.328 eV, indicating the reactivity order for three Char(N) models is as follows: Char(N)-2>Char(N)-1>Char(N)-3. DFT calculation indicates that the interaction between Char(N) and steam reduces unsaturated carbon atoms and lower the char decomposition activity, which will inhibit the yield of HCN. In contrast, through hydrogen transfer reactions, nitrogen atoms are easily combined with hydrogen atoms, which is more conducive to the formation of ammonia. ReaxFF MD modeling proves that HCN is the main product for Char(N) decomposition under inert atmosphere. Under steam atmosphere, nitrogen atoms in char are more likely to be converted into amino products. The induction of steam provides a large number of active hydrogen radicals, which is able to attack the nitrogen atoms of char and form N–H bonds, thus promoting the formation of ammonia.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of nitrogen-containing species during char gasification is crucial for emission of nitrogenous pollutants. In this work, the detailed nitrogen migration mechanism during char gasification is studied. Density functional theory (DFT) coupled with ReaxFF MD methods are used to conduct an in-depth analysis on the intrinsic reaction mechanism during Char(N) and steam interaction. DFT results show that orbital electrons of carbon atoms on char surface are driven towards nitrogen atoms by nitrogen functional groups. The electron density of adjacent carbon atoms is weakened, which has a positive charge. Orbital electron properties show that the band energy gaps of three Char(N) models are 3.063 eV, 1.092 eV and 3.328 eV, indicating the reactivity order for three Char(N) models is as follows: Char(N)-2>Char(N)-1>Char(N)-3. DFT calculation indicates that the interaction between Char(N) and steam reduces unsaturated carbon atoms and lower the char decomposition activity, which will inhibit the yield of HCN. In contrast, through hydrogen transfer reactions, nitrogen atoms are easily combined with hydrogen atoms, which is more conducive to the formation of ammonia. ReaxFF MD modeling proves that HCN is the main product for Char(N) decomposition under inert atmosphere. Under steam atmosphere, nitrogen atoms in char are more likely to be converted into amino products. The induction of steam provides a large number of active hydrogen radicals, which is able to attack the nitrogen atoms of char and form N–H bonds, thus promoting the formation of ammonia.

Abstract Image

Abstract Image

炭气化过程中蒸汽诱导氮迁移机理的密度泛函理论和 ReaxFF MD 研究
木炭气化过程中含氮物质的形成对含氮污染物的排放至关重要。本研究详细探讨了炭气化过程中的氮迁移机理。采用密度泛函理论(DFT)和 ReaxFF MD 方法,对炭(氮)与蒸汽相互作用过程中的内在反应机理进行了深入分析。DFT 结果表明,炭表面碳原子的轨道电子在氮官能团的驱动下向氮原子移动。相邻碳原子的电子密度减弱,从而带有正电荷。轨道电子特性表明,三种 Char(N)模型的带能隙分别为 3.063 eV、1.092 eV 和 3.328 eV,表明三种 Char(N)模型的反应性顺序如下:Char(N)-2>Char(N)-1>Char(N)-3。DFT 计算表明,Char(N) 与蒸汽之间的相互作用减少了不饱和碳原子,降低了炭的分解活性,从而抑制了 HCN 的产率。相反,通过氢转移反应,氮原子很容易与氢原子结合,更有利于氨的生成。ReaxFF MD 模型证明,在惰性气氛下,HCN 是 Char(N) 分解的主要产物。在蒸汽气氛下,炭中的氮原子更有可能转化为氨基产物。蒸汽的诱导作用提供了大量的活性氢自由基,这些氢自由基能够攻击木炭中的氮原子并形成 N-H 键,从而促进氨的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信