The effect of switching and cycle-to-cycle variations of RRAM on 4-bit encryption/decryption process

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
T. Nivetha , B. Bindu , Kamsani Noor Ain
{"title":"The effect of switching and cycle-to-cycle variations of RRAM on 4-bit encryption/decryption process","authors":"T. Nivetha ,&nbsp;B. Bindu ,&nbsp;Kamsani Noor Ain","doi":"10.1016/j.mee.2024.112244","DOIUrl":null,"url":null,"abstract":"<div><p>The resistive RAM (RRAM) based in-memory computation is a promising technology to overcome the Von-Neumann bottleneck to provide fast and efficient computation. The RRAM is the most appropriate choice for cryptographic applications like encryption/decryption in which the data is computed and stored in the memory itself which enhances the security. The variability issue of RRAM namely switching or device parameter variations and cycle-to-cycle variations deteriorates the functionality of RRAM based circuits. In this paper, the XOR gate with V/R-R logic and a 4-bit encryption/decryption process are implemented using the RRAM Stanford model integrated in the Cadence circuit simulator. The output voltage variations of XOR gate and the encryption/decryption by varying switching and cycle-to-cycle parameters are analyzed. The range of switching parameters of the model that provides the accurate outputs of XOR gate and encryption/decryption is determined.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001138","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The resistive RAM (RRAM) based in-memory computation is a promising technology to overcome the Von-Neumann bottleneck to provide fast and efficient computation. The RRAM is the most appropriate choice for cryptographic applications like encryption/decryption in which the data is computed and stored in the memory itself which enhances the security. The variability issue of RRAM namely switching or device parameter variations and cycle-to-cycle variations deteriorates the functionality of RRAM based circuits. In this paper, the XOR gate with V/R-R logic and a 4-bit encryption/decryption process are implemented using the RRAM Stanford model integrated in the Cadence circuit simulator. The output voltage variations of XOR gate and the encryption/decryption by varying switching and cycle-to-cycle parameters are analyzed. The range of switching parameters of the model that provides the accurate outputs of XOR gate and encryption/decryption is determined.

Abstract Image

RRAM 的开关和周期变化对 4 位加密/解密过程的影响
基于电阻式 RAM(RRAM)的内存计算是一种很有前途的技术,它可以克服冯-诺伊曼瓶颈,提供快速高效的计算。对于加密/解密等加密应用来说,RRAM 是最合适的选择,因为数据在内存中计算和存储,从而提高了安全性。RRAM 的可变性问题,即开关或器件参数变化以及周期与周期之间的变化,会降低基于 RRAM 电路的功能。本文使用集成在 Cadence 电路模拟器中的 RRAM Stanford 模型,实现了带有 V/R-R 逻辑的 XOR 门和 4 位加密/解密过程。分析了 XOR 门的输出电压变化,以及通过改变开关和周期到周期参数实现的加密/解密。确定了能提供 XOR 门和加密/解密准确输出的模型开关参数范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信