{"title":"High-sensitive surface plasmon resonance sensor for melamine detection in dairy products based on graphene oxide /chitosan nanocomposite","authors":"","doi":"10.1016/j.foodcont.2024.110761","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate diagnosis and determination of the appropriate dose of melamine is crucial, especially in children's food, due to the potential for severe side effects such as kidney stones. This research has demonstrated the effectiveness of the graphene oxide-chitosan (GOCS) composite in modifying the gold chip surface as a sensor platform, resulting in a significant 1.17° angular change relative to the bare gold chip for the detection of melamine. The GOCS composite was analyzed using SEM, XRD, and FTIR. The GOCS sensor exhibited high sensitivity with a value of 239.1<sup><strong>◦</strong></sup>μM<sup>−1</sup>, a linear range (L.R) of 0.01–200 μM, affinity constant of 1.73 × 10<sup>4</sup> and an impressive limit of detection (LOD) of 10 nM. These findings highlight the potential of the GOCS sensor for accurately and precisely detecting melamine. Additionally, we compared the obtained results from the sensor with those from the standard method of HPLC, which is referred to as the gold standard in analytical chemistry, by conducting tests using GOCS/Au to identify melamine in commercial samples. The comparison showed that the GOCS sensor offers desirable features for analyzing real samples, making it a promising tool for accurately and efficiently detecting melamine in various samples.</p></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095671352400478X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate diagnosis and determination of the appropriate dose of melamine is crucial, especially in children's food, due to the potential for severe side effects such as kidney stones. This research has demonstrated the effectiveness of the graphene oxide-chitosan (GOCS) composite in modifying the gold chip surface as a sensor platform, resulting in a significant 1.17° angular change relative to the bare gold chip for the detection of melamine. The GOCS composite was analyzed using SEM, XRD, and FTIR. The GOCS sensor exhibited high sensitivity with a value of 239.1◦μM−1, a linear range (L.R) of 0.01–200 μM, affinity constant of 1.73 × 104 and an impressive limit of detection (LOD) of 10 nM. These findings highlight the potential of the GOCS sensor for accurately and precisely detecting melamine. Additionally, we compared the obtained results from the sensor with those from the standard method of HPLC, which is referred to as the gold standard in analytical chemistry, by conducting tests using GOCS/Au to identify melamine in commercial samples. The comparison showed that the GOCS sensor offers desirable features for analyzing real samples, making it a promising tool for accurately and efficiently detecting melamine in various samples.
期刊介绍:
Food Control is an international journal that provides essential information for those involved in food safety and process control.
Food Control covers the below areas that relate to food process control or to food safety of human foods:
• Microbial food safety and antimicrobial systems
• Mycotoxins
• Hazard analysis, HACCP and food safety objectives
• Risk assessment, including microbial and chemical hazards
• Quality assurance
• Good manufacturing practices
• Food process systems design and control
• Food Packaging technology and materials in contact with foods
• Rapid methods of analysis and detection, including sensor technology
• Codes of practice, legislation and international harmonization
• Consumer issues
• Education, training and research needs.
The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.