Numerical semigroups with quasi maximal embedding dimension

IF 1.1 4区 数学 Q1 MATHEMATICS
D. Llena, J. C. Rosales
{"title":"Numerical semigroups with quasi maximal embedding dimension","authors":"D. Llena, J. C. Rosales","doi":"10.1007/s11587-024-00872-7","DOIUrl":null,"url":null,"abstract":"<p>Consider <span>\\(x\\in {\\mathbb {N}}\\setminus \\{0\\}\\)</span>. A QMED(<i>x</i>)-semigroup is a numerical semigroup <i>S</i> such that <span>\\(S{\\setminus }\\{0\\}=\\{a+kx \\mid a\\in {\\text {msg}}(S) \\text{ and } k\\in {\\mathbb {N}}\\}\\)</span> where <span>\\({\\text {msg}}(S)\\)</span> denotes the minimal system of generators of <i>S</i>. Note that if <i>x</i> is the multiplicity of <i>S</i> then <i>S</i> is a maximal embedding dimension numerical semigroup. In this work, we show that the set of all QMED(<i>x</i>)-semigroups is a Frobenius pseudo-variety giving the associated tree. Furthermore, we give formulas to obtain the Frobenius number, type, and genus of this class of semigroups.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"67 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00872-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider \(x\in {\mathbb {N}}\setminus \{0\}\). A QMED(x)-semigroup is a numerical semigroup S such that \(S{\setminus }\{0\}=\{a+kx \mid a\in {\text {msg}}(S) \text{ and } k\in {\mathbb {N}}\}\) where \({\text {msg}}(S)\) denotes the minimal system of generators of S. Note that if x is the multiplicity of S then S is a maximal embedding dimension numerical semigroup. In this work, we show that the set of all QMED(x)-semigroups is a Frobenius pseudo-variety giving the associated tree. Furthermore, we give formulas to obtain the Frobenius number, type, and genus of this class of semigroups.

Abstract Image

具有准最大嵌入维数的数值半群
考虑 \(x\in {\mathbb {N}}\setminus\{0\}\).一个 QMED(x)-semigroup 是一个数值半群 S,使得 \(S{setminus }\{0\}=\{a+kx \mid a\in {\text {msg}}(S) \text{ and } k\in {\mathbb {N}}\}) 其中 \({\text {msg}}(S)\) 表示 S 的最小子系统。请注意,如果 x 是 S 的乘数,那么 S 就是一个最大嵌入维数半群。在这项工作中,我们证明了所有 QMED(x)-semigroups 的集合是一个给出相关树的 Frobenius 伪变体。此外,我们还给出了这一类半群的弗罗贝尼斯数、类型和属的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信