{"title":"Design and synthesis of metal–organic cycles/cages (MOCs) and their applications","authors":"Yuanyuan Li, Fengmin Zhang, Yan Sun","doi":"10.1063/5.0225164","DOIUrl":null,"url":null,"abstract":"Metal–organic cycles/cages (MOCs) are a class of nanoscale molecular entities that possess distinct shapes and sizes and are designed and synthesized through the predictable integration of organic and inorganic ligands. The diverse functionalities of MOCs render them valuable in the fields of biology, chemistry, and materials. First, the cavity renders them suitable for host–guest interactions, which are subsequently employed to induce conformational changes, and this approach is particularly advantageous for catalysis, sensing, and controlled loading and release. Furthermore, MOC- and polymer-based aggregates can be applied in biomedical research and cascaded light-harvesting systems. Benefiting from the high specific surface area, the initial exploration of MOC-based hierarchical assemblies indicates their potential applications in biomedicine and catalysis. MOC-based microsheets and centimeter films can be used for dual-mode catalysis and novel wound dressing for nonhealing wounds. In addition, the design and synthesis of novel MOCs with different shapes and sizes through various strategies are discussed. We summarized the latest progress in the past 5 years in this Review.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"67 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0225164","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal–organic cycles/cages (MOCs) are a class of nanoscale molecular entities that possess distinct shapes and sizes and are designed and synthesized through the predictable integration of organic and inorganic ligands. The diverse functionalities of MOCs render them valuable in the fields of biology, chemistry, and materials. First, the cavity renders them suitable for host–guest interactions, which are subsequently employed to induce conformational changes, and this approach is particularly advantageous for catalysis, sensing, and controlled loading and release. Furthermore, MOC- and polymer-based aggregates can be applied in biomedical research and cascaded light-harvesting systems. Benefiting from the high specific surface area, the initial exploration of MOC-based hierarchical assemblies indicates their potential applications in biomedicine and catalysis. MOC-based microsheets and centimeter films can be used for dual-mode catalysis and novel wound dressing for nonhealing wounds. In addition, the design and synthesis of novel MOCs with different shapes and sizes through various strategies are discussed. We summarized the latest progress in the past 5 years in this Review.
金属有机环/笼(MOCs)是一类具有独特形状和尺寸的纳米级分子实体,通过有机和无机配体的可预测整合而设计合成。MOCs 的多种功能使其在生物、化学和材料领域具有重要价值。首先,空腔使其适用于宿主与客体之间的相互作用,随后利用这种相互作用诱导构象变化,这种方法在催化、传感、控制装载和释放方面尤其具有优势。此外,基于 MOC 和聚合物的聚合体还可应用于生物医学研究和级联光收集系统。得益于高比表面积,对基于 MOC 的分层集合体的初步探索显示了它们在生物医学和催化领域的潜在应用。基于 MOC 的微片和厘米薄膜可用于双模催化和治疗不愈合伤口的新型伤口敷料。此外,我们还讨论了通过各种策略设计和合成不同形状和尺寸的新型 MOC。我们在这篇综述中总结了过去 5 年的最新进展。
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.