The sustained and effective anticancer effect of plasma‐activated hydrogel on melanoma cells

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Shengduo Xu, Shiyao Wang, Tong Wu, Jishen Zhang, Xixi Jing, Jiao Lin, Hao Zhang, Dingxin Liu, Xianzhen Jin, Zifeng Wang, Xiaohua Wang, Mingzhe Rong
{"title":"The sustained and effective anticancer effect of plasma‐activated hydrogel on melanoma cells","authors":"Shengduo Xu, Shiyao Wang, Tong Wu, Jishen Zhang, Xixi Jing, Jiao Lin, Hao Zhang, Dingxin Liu, Xianzhen Jin, Zifeng Wang, Xiaohua Wang, Mingzhe Rong","doi":"10.1002/ppap.202400004","DOIUrl":null,"url":null,"abstract":"Cold atmospheric plasma has selective anticancer effects, while limited penetration depth and lifetime of reactive species restrict its usage. Herein, we adopt saline and hydrogel as carriers of plasma‐induced reactive species, and link reactive species accumulation, attenuation, storage, and slow‐release to anticancer effects of plasma‐activated media. Results reveal that plasma‐activated hydrogel (PAH) has a sustained anticancer effect and prolongs the storage duration of reactive species, thus causing more intracellular oxidative species accumulation and inducing melanoma cell apoptosis with reactive species continuously released to cell medium. In contrast, plasma‐activated saline has an attenuated anticancer effect with decline in reactive species. Therefore, PAH serves as a useful reactive species carrier and has potential for further anticancer research.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400004","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cold atmospheric plasma has selective anticancer effects, while limited penetration depth and lifetime of reactive species restrict its usage. Herein, we adopt saline and hydrogel as carriers of plasma‐induced reactive species, and link reactive species accumulation, attenuation, storage, and slow‐release to anticancer effects of plasma‐activated media. Results reveal that plasma‐activated hydrogel (PAH) has a sustained anticancer effect and prolongs the storage duration of reactive species, thus causing more intracellular oxidative species accumulation and inducing melanoma cell apoptosis with reactive species continuously released to cell medium. In contrast, plasma‐activated saline has an attenuated anticancer effect with decline in reactive species. Therefore, PAH serves as a useful reactive species carrier and has potential for further anticancer research.
血浆激活水凝胶对黑色素瘤细胞的持续有效抗癌作用
冷大气等离子体具有选择性抗癌作用,但有限的渗透深度和反应物的寿命限制了其使用。在此,我们采用生理盐水和水凝胶作为等离子体诱导的活性物种的载体,并将活性物种的积累、衰减、储存和缓释与等离子体激活介质的抗癌效果联系起来。结果发现,血浆活化水凝胶(PAH)具有持续的抗癌作用,并能延长活性物质的储存时间,从而引起细胞内更多的氧化物积累,并通过向细胞介质持续释放活性物质诱导黑色素瘤细胞凋亡。相比之下,血浆活化生理盐水的抗癌效果会随着活性物质的减少而减弱。因此,多环芳香烃是一种有用的活性物质载体,具有进一步开展抗癌研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Processes and Polymers
Plasma Processes and Polymers 物理-高分子科学
CiteScore
6.60
自引率
11.40%
发文量
150
审稿时长
3 months
期刊介绍: Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信