Aging State Evaluation of Oil-Paper Insulation Based on Electro-Mechanical Impedance Technology

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiujun Huang;Shengchang Ji;Mingyang Xu;Fan Zhang
{"title":"Aging State Evaluation of Oil-Paper Insulation Based on Electro-Mechanical Impedance Technology","authors":"Xiujun Huang;Shengchang Ji;Mingyang Xu;Fan Zhang","doi":"10.1109/TDEI.2024.3433321","DOIUrl":null,"url":null,"abstract":"The oil-paper insulation’s aging can deteriorate the mechanical and electrical performance of the electrical power device; thus, it is necessary to evaluate the aging state of oil-paper insulation. Based on the electro-mechanical impedance technology, a novel aging state evaluation method of oil-paper insulation is proposed in this letter, which utilizes the piezoelectricity caused by the insulating paper attached to the piezoelectric material (PZT). The electro-mechanical model of the paper-PZT system is established considering the electric-vibration coupling effect and its characteristics are analyzed using the principle of stationary action. The insulating paper with different aging states, indicated by the degree of polymerization (DP), is selected to obtain the impedance characteristics of the paper-PZT system. The experimental results show the impedance amplitudes of the paper-PZT system increase with the aging degree, which can help in the nondestructive aging evaluation of the oil-paper insulation.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"31 5","pages":"2853-2856"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10608182/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The oil-paper insulation’s aging can deteriorate the mechanical and electrical performance of the electrical power device; thus, it is necessary to evaluate the aging state of oil-paper insulation. Based on the electro-mechanical impedance technology, a novel aging state evaluation method of oil-paper insulation is proposed in this letter, which utilizes the piezoelectricity caused by the insulating paper attached to the piezoelectric material (PZT). The electro-mechanical model of the paper-PZT system is established considering the electric-vibration coupling effect and its characteristics are analyzed using the principle of stationary action. The insulating paper with different aging states, indicated by the degree of polymerization (DP), is selected to obtain the impedance characteristics of the paper-PZT system. The experimental results show the impedance amplitudes of the paper-PZT system increase with the aging degree, which can help in the nondestructive aging evaluation of the oil-paper insulation.
基于机电阻抗技术的油纸绝缘老化状态评估
油纸绝缘的老化会使电力设备的机械和电气性能恶化,因此有必要对油纸绝缘的老化状态进行评估。本文基于机电阻抗技术,提出了一种新型的油纸绝缘老化状态评估方法,该方法利用了绝缘纸附着在压电材料(PZT)上所产生的压电效应。考虑到电振耦合效应,建立了纸-PZT 系统的机电模型,并利用静止作用原理分析了其特性。选择以聚合度(DP)表示的不同老化状态的绝缘纸来获得纸-PZT 系统的阻抗特性。实验结果表明,纸-PZT 系统的阻抗幅值随老化程度的增加而增大,这有助于对油纸绝缘层进行无损老化评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信