Remote sensing imagery to predict soybean yield: a case study of vegetation indices contribution

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Lucas R. Amaral, Henrique Oldoni, Gustavo M. M. Baptista, Gustavo H. S. Ferreira, Rodrigo G. Freitas, Cenneya L. Martins, Isabella A. Cunha, Adão F. Santos
{"title":"Remote sensing imagery to predict soybean yield: a case study of vegetation indices contribution","authors":"Lucas R. Amaral, Henrique Oldoni, Gustavo M. M. Baptista, Gustavo H. S. Ferreira, Rodrigo G. Freitas, Cenneya L. Martins, Isabella A. Cunha, Adão F. Santos","doi":"10.1007/s11119-024-10174-5","DOIUrl":null,"url":null,"abstract":"<p>Mapping the spatial variability of crops is critical for precision agriculture. In this sense, remote sensing is a key technology generally dependent on the result of vegetation indices (VIs). Therefore, investigating the sensitivity of VIs and their contribution toward explaining crop variability and assisting in predicting yield is one of the pathways scientific research needs to explore. In this study, we evaluated 12 VIs with different acquisition principles in four soybean-producing fields. Using these VIs proved to be interesting to increase the performance of yield prediction models using the Randon Forest algorithm. However, simply adding VIs to the model is not enough; these VIs must aggregate information on crop variability. Some VIs are calculated based on the variation of the scene under study, and these can be an interesting option to complement the information provided by more traditional VIs, such as NDVI, assisting in predictive models, even if their direct correlation with crop yield is low in some situations. We found that using VIs groups with the same acquisition principle in isolation did not allow reaching performance of models that contained more than one principle simultaneously. In this study, the CI and TC2 indices stood out. Thus, associating VIs with different acquisition principles and, consequently, capturing different responses to variability in vegetation vigor and canopy structure is more important than the number of predictor variables itself.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"66 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10174-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping the spatial variability of crops is critical for precision agriculture. In this sense, remote sensing is a key technology generally dependent on the result of vegetation indices (VIs). Therefore, investigating the sensitivity of VIs and their contribution toward explaining crop variability and assisting in predicting yield is one of the pathways scientific research needs to explore. In this study, we evaluated 12 VIs with different acquisition principles in four soybean-producing fields. Using these VIs proved to be interesting to increase the performance of yield prediction models using the Randon Forest algorithm. However, simply adding VIs to the model is not enough; these VIs must aggregate information on crop variability. Some VIs are calculated based on the variation of the scene under study, and these can be an interesting option to complement the information provided by more traditional VIs, such as NDVI, assisting in predictive models, even if their direct correlation with crop yield is low in some situations. We found that using VIs groups with the same acquisition principle in isolation did not allow reaching performance of models that contained more than one principle simultaneously. In this study, the CI and TC2 indices stood out. Thus, associating VIs with different acquisition principles and, consequently, capturing different responses to variability in vegetation vigor and canopy structure is more important than the number of predictor variables itself.

Abstract Image

遥感图像预测大豆产量:植被指数贡献案例研究
绘制作物空间变化图对于精准农业至关重要。从这个意义上说,遥感是一项关键技术,通常依赖于植被指数(VIs)的结果。因此,研究植被指数的灵敏度及其对解释作物变异性和协助预测产量的贡献是科学研究需要探索的途径之一。在本研究中,我们在四块大豆产区评估了 12 种具有不同采集原理的 VIs。事实证明,使用这些 VIs 有助于提高使用兰登森林算法的产量预测模型的性能。然而,仅仅在模型中加入 VIs 是不够的;这些 VIs 必须汇集有关作物变异性的信息。有些 VIs 是根据所研究场景的变化计算出来的,这些 VIs 可以作为一种有趣的选择,补充更传统的 VIs(如 NDVI)所提供的信息,协助预测模型,即使在某些情况下它们与作物产量的直接相关性很低。我们发现,单独使用具有相同采集原理的视像组,无法达到同时包含一个以上原理的模型的性能。在这项研究中,CI 和 TC2 指数表现突出。因此,将植被指数与不同的获取原理联系起来,从而捕捉植被活力和冠层结构变化的不同反应,比预测变量本身的数量更重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信