Hao Zhang , Xueyang Xing , Yiteng Du , Tingchun Li , Jianxin Yu , Qingwen Zhu
{"title":"Adjustment mechanism of blasting dynamic-static action in the water decoupling charge","authors":"Hao Zhang , Xueyang Xing , Yiteng Du , Tingchun Li , Jianxin Yu , Qingwen Zhu","doi":"10.1016/j.ijmst.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Water decoupling charge blasting excels in rock breaking, relying on its uniform pressure transmission and low energy dissipation. The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure. However, the quantitative relationship between the two contributions is unclear, and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting. In this study, a theoretical model of blasting fracturing partitioning is established. The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained. The reliability is verified through model experiments and a field test. The results show that with the increasing of decoupling coefficient, the rock breaking ability of blasting dynamic action decreases, while quasi-static action increases and then decreases. The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone. The quasi-static action plays a leading role in the fracturing range, determining an optimal decoupling coefficient. The optimal water decoupling coefficient is not a fixed value, which can be obtained by the proposed theoretical model. Compared with the theoretical results, the maximum error in the model experiment results is 8.03%, and the error in the field test result is 3.04%.</p></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 6","pages":"Pages 821-836"},"PeriodicalIF":11.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209526862400082X/pdfft?md5=859668a0c3f8772efa897bbd361f931c&pid=1-s2.0-S209526862400082X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209526862400082X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
Water decoupling charge blasting excels in rock breaking, relying on its uniform pressure transmission and low energy dissipation. The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure. However, the quantitative relationship between the two contributions is unclear, and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting. In this study, a theoretical model of blasting fracturing partitioning is established. The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained. The reliability is verified through model experiments and a field test. The results show that with the increasing of decoupling coefficient, the rock breaking ability of blasting dynamic action decreases, while quasi-static action increases and then decreases. The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone. The quasi-static action plays a leading role in the fracturing range, determining an optimal decoupling coefficient. The optimal water decoupling coefficient is not a fixed value, which can be obtained by the proposed theoretical model. Compared with the theoretical results, the maximum error in the model experiment results is 8.03%, and the error in the field test result is 3.04%.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.