Electrolyte engineering for the mass exfoliation of graphene oxide across wide oxidation degrees†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Huili Ren, Xiaopei Xia, Yingzhi Sun, Yi Zhai, Zongzheng Zhang, Jiahao Wu, Jing Li and Mingjie Liu
{"title":"Electrolyte engineering for the mass exfoliation of graphene oxide across wide oxidation degrees†","authors":"Huili Ren, Xiaopei Xia, Yingzhi Sun, Yi Zhai, Zongzheng Zhang, Jiahao Wu, Jing Li and Mingjie Liu","doi":"10.1039/D4TA02654C","DOIUrl":null,"url":null,"abstract":"<p >Oxygen-containing functional groups play crucial roles in graphene oxide due to their enhanced processability, stability, and functionalization. However, achieving precise control over the oxidation degrees of graphene oxide through a straightforward and effective method remains a significant challenge. Herein, we report a two-step electrochemical approach encompassing pre-intercalation and post-exfoliation/oxidation, enabling the mass exfoliation of graphene oxide with customizable oxidation levels. Initially, the pre-intercalation of concentrated sulfuric acid into graphite foil promotes uniform expansion, transforming it into a quasi-monolayer graphene structure. Subsequently, post-exfoliation in reductive/oxidative electrolytes triggers the simultaneous detachment and oxidation process, resulting in well-dispersed graphene nanosheets with quantified oxidation levels on a timescale of minutes. Comprehensive characterization studies confirm the varied oxidation levels of the exfoliated graphene oxide, spanning conventional oxidation degrees obtained <em>via</em> Staudenmaier's, Hofmann's, and Hummers' methods. Furthermore, we evaluate the scalability of this method and the solution processability of exfoliated graphene nanosheets, demonstrating the continuous production of graphene oxide at the kilogram scale and the fabrication of meter-length nanocomposite films with exceptional mechanical properties.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta02654c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen-containing functional groups play crucial roles in graphene oxide due to their enhanced processability, stability, and functionalization. However, achieving precise control over the oxidation degrees of graphene oxide through a straightforward and effective method remains a significant challenge. Herein, we report a two-step electrochemical approach encompassing pre-intercalation and post-exfoliation/oxidation, enabling the mass exfoliation of graphene oxide with customizable oxidation levels. Initially, the pre-intercalation of concentrated sulfuric acid into graphite foil promotes uniform expansion, transforming it into a quasi-monolayer graphene structure. Subsequently, post-exfoliation in reductive/oxidative electrolytes triggers the simultaneous detachment and oxidation process, resulting in well-dispersed graphene nanosheets with quantified oxidation levels on a timescale of minutes. Comprehensive characterization studies confirm the varied oxidation levels of the exfoliated graphene oxide, spanning conventional oxidation degrees obtained via Staudenmaier's, Hofmann's, and Hummers' methods. Furthermore, we evaluate the scalability of this method and the solution processability of exfoliated graphene nanosheets, demonstrating the continuous production of graphene oxide at the kilogram scale and the fabrication of meter-length nanocomposite films with exceptional mechanical properties.

Abstract Image

用于氧化石墨烯跨宽氧化度大规模剥离的电解质工程
含氧官能团可提高氧化石墨烯的加工性、稳定性和功能化,因此在氧化石墨烯中发挥着至关重要的作用。然而,通过直接有效的方法实现对氧化石墨烯氧化度的精确控制仍然是一项重大挑战。在此,我们报告了一种包括前互层化和后外剥离/氧化的两步电化学方法,从而实现了氧化石墨烯的大规模剥离,并可定制氧化程度。首先,将浓硫酸预掺杂到石墨箔中,促进石墨箔均匀膨胀,将其转化为准单层石墨烯结构。随后,在还原性/氧化性电解质中进行后剥离会同时触发剥离和氧化过程,从而在分钟级时间内形成具有量化氧化水平的分散良好的石墨烯纳米片。全面的表征证实了剥离氧化石墨烯的不同氧化程度,涵盖了来自 Staudenmaier、Hofmann 和 Hummers 方法的传统氧化程度。此外,我们还评估了该方法的可扩展性以及剥离氧化石墨烯纳米片的溶液可加工性,证明可连续生产公斤级氧化石墨烯,并制造出具有优异机械性能的米长纳米复合薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信