Jia-Heng Fang, Ji-Jun Chen, Xuan-Yi Du, Zhe Dong, Run-Yan Tian, Chang-Jiang Yang, Fu-Li Wang, Cheng Luan, Zhong-Liang Li, Xin-Yuan Liu
{"title":"Copper-Catalyzed Asymmetric Three-Component Radical 1,2-Carboamination of Acrylamides with Arylamines: Access to Chiral α-Tertiary N-Arylamines","authors":"Jia-Heng Fang, Ji-Jun Chen, Xuan-Yi Du, Zhe Dong, Run-Yan Tian, Chang-Jiang Yang, Fu-Li Wang, Cheng Luan, Zhong-Liang Li, Xin-Yuan Liu","doi":"10.31635/ccschem.024.202404389","DOIUrl":null,"url":null,"abstract":"<p>The asymmetric radical carboamination of 1,1-disubstituted alkenes from readily available alkyl halides and arylamines provides expedient access to value-added chiral α-tertiary <i>N</i>-arylamines but has been less recognized. A challenge arises mainly from the difficult reaction initiation inherent in alkyl halides and the construction of fully substituted chiral C–N bonds from sterically congested tertiary alkyl radicals. Herein, we report a copper-catalyzed asymmetric three-component radical carboamination of acrylamides utilizing an anionic chiral <i>N,N,N</i>-ligand under mild conditions. This ligand was essential for the reaction initiation by enhancing the reducing capability of copper and enabling the enantiocontrol over tertiary alkyl radicals. The substrate scope was broad, covering an array of acrylamides, aryl- and heteroaryl-amines, as well as alkyl halides and sulfonyl chlorides, enabling good functional group tolerance. When combined with the follow-up transformation, this strategy provides a versatile platform for accessing structurally diverse chiral α-tertiary <i>N</i>-arylamine building blocks of interest in organic synthesis.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404389","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The asymmetric radical carboamination of 1,1-disubstituted alkenes from readily available alkyl halides and arylamines provides expedient access to value-added chiral α-tertiary N-arylamines but has been less recognized. A challenge arises mainly from the difficult reaction initiation inherent in alkyl halides and the construction of fully substituted chiral C–N bonds from sterically congested tertiary alkyl radicals. Herein, we report a copper-catalyzed asymmetric three-component radical carboamination of acrylamides utilizing an anionic chiral N,N,N-ligand under mild conditions. This ligand was essential for the reaction initiation by enhancing the reducing capability of copper and enabling the enantiocontrol over tertiary alkyl radicals. The substrate scope was broad, covering an array of acrylamides, aryl- and heteroaryl-amines, as well as alkyl halides and sulfonyl chlorides, enabling good functional group tolerance. When combined with the follow-up transformation, this strategy provides a versatile platform for accessing structurally diverse chiral α-tertiary N-arylamine building blocks of interest in organic synthesis.
期刊介绍:
CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.