{"title":"Intrinsically stretchable OLEDs with a designed morphology-sustainable layer and stretchable metal cathode","authors":"Je-Heon Oh, Kun-Hoo Jeon, Jin-Woo Park","doi":"10.1038/s41528-024-00332-0","DOIUrl":null,"url":null,"abstract":"The development of wearable devices has increased the need for organic light-emitting diodes (OLEDs) that are soft, stretchable, and can integrate seamlessly with the human body. Traditional intrinsically stretchable OLEDs (is-OLED) often suffer from reduced performance due to orthogonal solvent problem and lamination fabrication process, which can cause defects and delamination. To overcome these challenges, we developed a sequentially coated is-OLED and confirmed the maintenance of the designed morphologies of each layer and a highly stretchable metallic is-cathode. Our is-OLEDs achieved a maximum total luminance of 3151 cd m–2 and a total current efficiency of 5.4 cd A–1. It also demonstrated superior durability, with the ability to stretch up to 70% and maintain 80% luminance after 300 cycles at 40% strain. This advancement suggests a promising future for durable and efficient soft electronic devices.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":12.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00332-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00332-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of wearable devices has increased the need for organic light-emitting diodes (OLEDs) that are soft, stretchable, and can integrate seamlessly with the human body. Traditional intrinsically stretchable OLEDs (is-OLED) often suffer from reduced performance due to orthogonal solvent problem and lamination fabrication process, which can cause defects and delamination. To overcome these challenges, we developed a sequentially coated is-OLED and confirmed the maintenance of the designed morphologies of each layer and a highly stretchable metallic is-cathode. Our is-OLEDs achieved a maximum total luminance of 3151 cd m–2 and a total current efficiency of 5.4 cd A–1. It also demonstrated superior durability, with the ability to stretch up to 70% and maintain 80% luminance after 300 cycles at 40% strain. This advancement suggests a promising future for durable and efficient soft electronic devices.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.