Trans-membrane piezoelectric activation of peroxymonosulfate for effective control of waterborne antibiotic resistance dissemination

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yang Yu, Lianyu Liu, Yiqiao Xie, Wei Huang, Hai Liu, Xiaotu Liu, Da Chen
{"title":"Trans-membrane piezoelectric activation of peroxymonosulfate for effective control of waterborne antibiotic resistance dissemination","authors":"Yang Yu, Lianyu Liu, Yiqiao Xie, Wei Huang, Hai Liu, Xiaotu Liu, Da Chen","doi":"10.1038/s41545-024-00351-4","DOIUrl":null,"url":null,"abstract":"Increasing prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) constitutes an emerging water safety issue globally. However, the effectiveness of current water treatment techniques in the control of ARGs dissemination remains controversial. Here, we develop a dual-zone strategy based on piezoelectric membrane filtration to efficiently eliminate waterborne antibiotic resistance. Following complete ARB inactivation and effective ARGs reduction in the retentate near the membrane surface (zone 1), a subsequent trans-membrane process (zone 2) further promotes ARGs elimination in the permeate, due to boosted interactions between ARGs and reactive oxygen species (ROS) generated from piezoelectric peroxymonosulfate activation and minimized ROS competition from inactivated ARB within piezocatalytic channels. The abundance of ARGs was largely reduced to ~1.0 × 103 copies·mL−1 in the permeate from ~5.0 × 106 copies·mL−1 in the feed solution. The singlet oxygen (1O2) is demonstrated to be primarily responsible for ARB inactivation, while 1O2, hydroxyl radical (•OH), sulfate radical (SO4·−) and superoxide radical (·O2−) can all participate in ARGs degradation. Our work demonstrates that the piezoelectric membrane-based dual-zone strategy has great potential to control the risk of ARGs dissemination.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-9"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00351-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00351-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) constitutes an emerging water safety issue globally. However, the effectiveness of current water treatment techniques in the control of ARGs dissemination remains controversial. Here, we develop a dual-zone strategy based on piezoelectric membrane filtration to efficiently eliminate waterborne antibiotic resistance. Following complete ARB inactivation and effective ARGs reduction in the retentate near the membrane surface (zone 1), a subsequent trans-membrane process (zone 2) further promotes ARGs elimination in the permeate, due to boosted interactions between ARGs and reactive oxygen species (ROS) generated from piezoelectric peroxymonosulfate activation and minimized ROS competition from inactivated ARB within piezocatalytic channels. The abundance of ARGs was largely reduced to ~1.0 × 103 copies·mL−1 in the permeate from ~5.0 × 106 copies·mL−1 in the feed solution. The singlet oxygen (1O2) is demonstrated to be primarily responsible for ARB inactivation, while 1O2, hydroxyl radical (•OH), sulfate radical (SO4·−) and superoxide radical (·O2−) can all participate in ARGs degradation. Our work demonstrates that the piezoelectric membrane-based dual-zone strategy has great potential to control the risk of ARGs dissemination.

Abstract Image

Abstract Image

跨膜压电激活过氧单硫酸盐,有效控制水传播的抗生素耐药性传播
抗生素耐药菌(ARB)和抗生素耐药基因(ARGs)的日益流行是全球新出现的水安全问题。然而,目前的水处理技术在控制 ARGs 传播方面的有效性仍存在争议。在此,我们开发了一种基于压电膜过滤的双区策略,以有效消除水传播的抗生素耐药性。由于压电过硫酸盐活化产生的 ARGs 和活性氧(ROS)之间的相互作用增强,以及压电催化通道内被灭活的 ARB 对 ROS 的竞争减至最低,在膜表面附近(1 区)的回流液中 ARB 被完全灭活并有效减少 ARGs 后,随后的跨膜过程(2 区)进一步促进了渗透液中 ARGs 的消除。在渗透液中,ARGs 的丰度从进料溶液中的约 5.0 × 106 拷贝-毫升-1 大幅降至约 1.0 × 103 拷贝-毫升-1。单线态氧(1O2)被证明是导致 ARB 失活的主要原因,而 1O2、羟基自由基(-OH)、硫酸根自由基(SO4--)和超氧自由基(-O2-)均可参与 ARGs 降解。我们的工作表明,基于压电膜的双区策略在控制 ARGs 传播风险方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信