Utilisation of low methane concentrations by methanotrophs.

Advances in microbial physiology Pub Date : 2024-01-01 Epub Date: 2024-05-27 DOI:10.1016/bs.ampbs.2024.04.005
Lian He, Mary E Lidstrom
{"title":"Utilisation of low methane concentrations by methanotrophs.","authors":"Lian He, Mary E Lidstrom","doi":"10.1016/bs.ampbs.2024.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O<sub>2</sub>. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.</p>","PeriodicalId":519928,"journal":{"name":"Advances in microbial physiology","volume":"85 ","pages":"57-96"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in microbial physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2024.04.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.

甲烷营养体对低浓度甲烷的利用。
气候变化的紧迫性日益突出,这表明甲烷是减缓全球变暖的关键温室气体,使其他减缓措施能够发挥作用。减少甲烷排放和清除空气中甲烷的一种方法是好氧的甲烷营养细菌,这些细菌以甲烷为唯一的碳和能量来源并需要氧气。这些甲烷营养细菌中的一个子集能够在甲烷含量为百万分之 1000 (ppm) 或更低的条件下生长,这为开发基于环境和生物反应器的甲烷处理系统提供了机会。然而,人们对这类甲烷营养体能够在低浓度甲烷条件下生长的特性知之甚少。本综述从开发可用于减少甲烷排放和从空气中去除甲烷的处理策略的角度,评估了有关甲烷营养体如何在低浓度甲烷条件下生长的现有信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信