Gregory Quiroz, Bibek Pokharel, Joseph Boen, Lina Tewala, Vinay Tripathi, Devon Williams, Lian-Ao Wu, Paraj Titum, Kevin Schultz, Daniel Lidar
{"title":"Dynamically generated decoherence-free subspaces and subsystems on superconducting qubits.","authors":"Gregory Quiroz, Bibek Pokharel, Joseph Boen, Lina Tewala, Vinay Tripathi, Devon Williams, Lian-Ao Wu, Paraj Titum, Kevin Schultz, Daniel Lidar","doi":"10.1088/1361-6633/ad6805","DOIUrl":null,"url":null,"abstract":"<p><p>Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad6805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.