Jack J W A van Loon, Olga P Berezovska, Theodorus J M Bervoets, Dina Montufar-Solis, Cor M Semeins, Behrouz Zandieh-Doulabi, P Natalia V Rodionova, Jackie Duke, J Paul Veldhuijzen
{"title":"Growth and mineralization of fetal mouse long bones under microgravity and daily 1 g gravity exposure.","authors":"Jack J W A van Loon, Olga P Berezovska, Theodorus J M Bervoets, Dina Montufar-Solis, Cor M Semeins, Behrouz Zandieh-Doulabi, P Natalia V Rodionova, Jackie Duke, J Paul Veldhuijzen","doi":"10.1038/s41526-024-00421-4","DOIUrl":null,"url":null,"abstract":"<p><p>In a previous Space Shuttle/Spacelab experiment (STS-42), we observed direct responses of isolated fetal mouse long bones to near weightlessness. This paper aimed to verify those results and study the effects of daily 1×g exposure during microgravity on the growth and mineralization of these bones. Two experiments were conducted: one on an American Space Shuttle mission (IML-2 on STS-65) and another on a Russian Bio-Cosmos flight (Bion-10 on Cosmos-2229). Despite differences in hardware, both used 17-day-old fetal mouse metatarsals cultured for 4 days. Results showed reduced proteoglycan content under microgravity compared to 1×g conditions, with no main differences in other cellular structures. While the overall metatarsal length was unaffected, the length increase of the mineralized diaphysis was significantly reduced under microgravity. Daily 1×g exposure for at least 6 h abolished the microgravity-induced reduction in cartilage mineralization, indicating the need for long-duration exposure to 1×g as an in-flight countermeasure using artificial gravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"80"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00421-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous Space Shuttle/Spacelab experiment (STS-42), we observed direct responses of isolated fetal mouse long bones to near weightlessness. This paper aimed to verify those results and study the effects of daily 1×g exposure during microgravity on the growth and mineralization of these bones. Two experiments were conducted: one on an American Space Shuttle mission (IML-2 on STS-65) and another on a Russian Bio-Cosmos flight (Bion-10 on Cosmos-2229). Despite differences in hardware, both used 17-day-old fetal mouse metatarsals cultured for 4 days. Results showed reduced proteoglycan content under microgravity compared to 1×g conditions, with no main differences in other cellular structures. While the overall metatarsal length was unaffected, the length increase of the mineralized diaphysis was significantly reduced under microgravity. Daily 1×g exposure for at least 6 h abolished the microgravity-induced reduction in cartilage mineralization, indicating the need for long-duration exposure to 1×g as an in-flight countermeasure using artificial gravity.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.