Using magnons as a quantum technology platform: a perspective.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Pratap Kumar Pal, Amrit Kumar Mondal, Anjan Barman
{"title":"Using magnons as a quantum technology platform: a perspective.","authors":"Pratap Kumar Pal, Amrit Kumar Mondal, Anjan Barman","doi":"10.1088/1361-648X/ad6828","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional electronics rely on charge currents for controlling and transmitting information, resulting in energy dissipation due to electron scattering. Over the last decade, magnons, quanta of spin waves, have emerged as a promising alternative. This perspective article provides a brief review of experimental and theoretical studies on quantum and hybrid magnonics resulting from the interaction of magnons with other quasiparticles in the GHz frequency range, offering insights into the development of functional magnonic devices. In this process, we discuss recent advancements in the quantum theory of magnons and their coupling with various types of qubits in nanoscale ferromagnets, antiferromagnets, synthetic antiferromagnets, and magnetic bulk systems. Additionally, we explore potential technological platforms that enable new functionalities in magnonics, concluding with future directions and emerging phenomena in this burgeoning field.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6828","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional electronics rely on charge currents for controlling and transmitting information, resulting in energy dissipation due to electron scattering. Over the last decade, magnons, quanta of spin waves, have emerged as a promising alternative. This perspective article provides a brief review of experimental and theoretical studies on quantum and hybrid magnonics resulting from the interaction of magnons with other quasiparticles in the GHz frequency range, offering insights into the development of functional magnonic devices. In this process, we discuss recent advancements in the quantum theory of magnons and their coupling with various types of qubits in nanoscale ferromagnets, antiferromagnets, synthetic antiferromagnets, and magnetic bulk systems. Additionally, we explore potential technological platforms that enable new functionalities in magnonics, concluding with future directions and emerging phenomena in this burgeoning field.

将磁子用作量子技术平台:一个视角。
传统电子学依赖电荷电流来控制和传输信息,电子散射会导致能量耗散。在过去十年中,磁子--量子自旋波--已成为一种有前途的替代方案。本视角文章简要回顾了磁子与其他准粒子在 GHz 频率范围内相互作用所产生的量子磁子学和混合磁子学的实验和理论研究,为功能磁子器件的开发提供了启示。在此过程中,我们将讨论磁子量子理论的最新进展,以及磁子与纳米级铁磁体、反铁磁体、合成反铁磁体和磁体系统中各类量子比特的耦合。此外,我们还探讨了实现磁子学新功能的潜在技术平台,最后介绍了这一新兴领域的未来发展方向和新出现的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信