Endless Dirac nodal lines and high mobility in kagome semimetal Ni3In2Se2: a theoretical and experimental study.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Sanand Kumar Pradhan, Sharadnarayan Pradhan, Priyanath Mal, P Rambabu, Archana Lakhani, Bipul Das, Bheema Lingam Chittari, G R Turpu, Pradip Das
{"title":"Endless Dirac nodal lines and high mobility in kagome semimetal Ni<sub>3</sub>In<sub>2</sub>Se<sub>2</sub>: a theoretical and experimental study.","authors":"Sanand Kumar Pradhan, Sharadnarayan Pradhan, Priyanath Mal, P Rambabu, Archana Lakhani, Bipul Das, Bheema Lingam Chittari, G R Turpu, Pradip Das","doi":"10.1088/1361-648X/ad6829","DOIUrl":null,"url":null,"abstract":"<p><p>Kagome-lattice crystal is crucial in quantum materials research, exhibiting unique transport properties due to its rich band structure and the presence of nodal lines and rings. Here, we investigate the electronic transport properties and perform first-principles calculations for Ni<sub>3</sub>In<sub>2</sub>Se<sub>2</sub>kagome topological semimetal. First-principles calculations of the band structure without the inclusion of spin-orbit coupling (SOC) shows that three bands are crossing the Fermi level (<i>E</i><sub><i>F</i></sub>), indicating the semi-metallic nature. With SOC, the band structure reveals a gap opening of the order of 10 meV.<i>Z</i><sub>2</sub>index calculations suggest the topologically nontrivial natures (<i>ν</i><sub>0</sub>;ν1ν2ν3) = (1;111) both without and with SOC. Our detailed calculations also indicate six endless Dirac nodal lines and two nodal rings with a<i>π</i>-Berry phase in the absence of SOC. The temperature-dependent resistivity is dominated by two scattering mechanisms:<i>s</i>-<i>d</i>interband scattering occurs below 50 K, while electron-phonon (<i>e</i>-<i>p</i>) scattering is observed above 50 K. The magnetoresistance (MR) curve aligns with the theory of extended Kohler's rule, suggesting multiple scattering origins and temperature-dependent carrier densities. A maximum MR of 120% at 2 K and 9 T, with a maximum estimated mobility of approximately 3000 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>are observed. Ni<sub>3</sub>In<sub>2</sub>Se<sub>2</sub>is an electron-hole compensated topological semimetal, as we have carrier density of electron (<i>n</i><sub><i>e</i></sub>) and hole (<i>n</i><sub><i>h</i></sub>) arene≈nh, estimated from Hall effect data fitted to a two-band model. Consequently, there is an increase in the mobility of electrons and holes, leading to a higher carrier mobility and a comparatively higher MR. The quantum interference effect leading to the two dimensional (2D) weak antilocalization effect (-σxx∝ln(B)) manifests as the diffusion of nodal line fermions in the 2D poloidal plane and the associated encircling Berry flux of nodal-line fermions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6829","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Kagome-lattice crystal is crucial in quantum materials research, exhibiting unique transport properties due to its rich band structure and the presence of nodal lines and rings. Here, we investigate the electronic transport properties and perform first-principles calculations for Ni3In2Se2kagome topological semimetal. First-principles calculations of the band structure without the inclusion of spin-orbit coupling (SOC) shows that three bands are crossing the Fermi level (EF), indicating the semi-metallic nature. With SOC, the band structure reveals a gap opening of the order of 10 meV.Z2index calculations suggest the topologically nontrivial natures (ν0;ν1ν2ν3) = (1;111) both without and with SOC. Our detailed calculations also indicate six endless Dirac nodal lines and two nodal rings with aπ-Berry phase in the absence of SOC. The temperature-dependent resistivity is dominated by two scattering mechanisms:s-dinterband scattering occurs below 50 K, while electron-phonon (e-p) scattering is observed above 50 K. The magnetoresistance (MR) curve aligns with the theory of extended Kohler's rule, suggesting multiple scattering origins and temperature-dependent carrier densities. A maximum MR of 120% at 2 K and 9 T, with a maximum estimated mobility of approximately 3000 cm2V-1s-1are observed. Ni3In2Se2is an electron-hole compensated topological semimetal, as we have carrier density of electron (ne) and hole (nh) arene≈nh, estimated from Hall effect data fitted to a two-band model. Consequently, there is an increase in the mobility of electrons and holes, leading to a higher carrier mobility and a comparatively higher MR. The quantum interference effect leading to the two dimensional (2D) weak antilocalization effect (-σxx∝ln(B)) manifests as the diffusion of nodal line fermions in the 2D poloidal plane and the associated encircling Berry flux of nodal-line fermions.

卡戈梅半金属 Ni3In2Se2 中的无尽狄拉克结线和高迁移率:理论与实验研究。
鹿目晶格晶体在量子材料研究中至关重要 ,由于其丰富的能带结构以及节点线和环的存在 ,它表现出独特的输运特性。这里,我们研究了 Ni3In2Se2 神户拓扑半金属的电子输运性质 ,并对其进行了第一性原理计算。 在不包含自旋轨道耦合(SOC)的情况下,对其能带结构进行的第一性原理计算表明,有三条能带跨越费米级(EF),表明其具有半金属性质 。加入 SOC 后,带状结构显示出 10 meV 量级的间隙开度 。Z2 指数计算表明,在不含 SOC 和含 SOC 的情况下,都存在拓扑学上的非难性质 (ν0;ν1ν2ν3)=(1;111) 。我们的详细计算结果 还表明,在没有 SOC 的情况下,有六条无尽的狄拉克节点线和两个具有 π 浆果相的节点环 。随温度变化的电阻率主要由两种散射机制决定:50 K 以下发生 s-d 带间散射,而 50 K 以上则观察到电子-声子(e-p)散射。磁阻(MR)曲线 符合扩展的科勒规则理论,表明存在多种散射起源 和随温度变化的载流子密度。Ni3In2Se2是一种电子-空穴补偿拓扑半金属,我们根据霍尔效应数据 拟合出的双带模型估算出电子(ne)和空穴(nh)的载流子 密度为ne≈nh。因此,电子和空穴的迁移率增加,导致载流子迁移率增加,磁阻相对增大。导致二维(2D)弱反聚焦效应(-σxx∝ln(B))的量子干涉效应表现为节点线 费米子在二维极面中的扩散以及节点线 费米子的相关环绕贝里通量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信