{"title":"A Novel NIR Fluorescent Probe for Rapid Response to Hydrogen Sulfide.","authors":"Xiaoci Lv, Yu Xie, Heping Li","doi":"10.1007/s10895-024-03857-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen sulfide (H<sub>2</sub>S), as an important small molecule bioregulator, plays a key role in many physiological activities and signaling, and abnormal fluctuations in H<sub>2</sub>S concentration can lead to a variety of diseases. Therefore, it is of great significance to develop a near-infrared fluorescence probe to visualize fluctuations in H<sub>2</sub>S levels. This work is based on Sulfur-substituted dicyanomethylene-4 H-chromene (DCM), A novel NIR fluorescent probe (E) -3 - (2 - (4 - (dicyanomethylene) -6-methyl-4 H-Thiochromen-2-yl)vinyl-1-methylquinolin-1-ium (DMT) was synthesized successfully. Research has found that in weakly alkaline environments, the probe DMT reacts rapidly with H<sub>2</sub>S (only 10 s), the fluorescence intensity at 684 nm is enhanced by about 60 fold, the detection limit is as low as 0.1623 µM, the Stokes shift is large (94 nm), and strong selectivity as well as anti-interference ability towards H<sub>2</sub>S. This will provide a new method for the rapid detection and further application of H<sub>2</sub>S.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03857-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H2S), as an important small molecule bioregulator, plays a key role in many physiological activities and signaling, and abnormal fluctuations in H2S concentration can lead to a variety of diseases. Therefore, it is of great significance to develop a near-infrared fluorescence probe to visualize fluctuations in H2S levels. This work is based on Sulfur-substituted dicyanomethylene-4 H-chromene (DCM), A novel NIR fluorescent probe (E) -3 - (2 - (4 - (dicyanomethylene) -6-methyl-4 H-Thiochromen-2-yl)vinyl-1-methylquinolin-1-ium (DMT) was synthesized successfully. Research has found that in weakly alkaline environments, the probe DMT reacts rapidly with H2S (only 10 s), the fluorescence intensity at 684 nm is enhanced by about 60 fold, the detection limit is as low as 0.1623 µM, the Stokes shift is large (94 nm), and strong selectivity as well as anti-interference ability towards H2S. This will provide a new method for the rapid detection and further application of H2S.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.