Jianyong Wei, Kai Shang, Xiaoer Wei, Yueqi Zhu, Yang Yuan, Mengfei Wang, Chengyu Ding, Lisong Dai, Zheng Sun, Xinsheng Mao, Fan Yu, Chunhong Hu, Duanduan Chen, Jie Lu, Yuehua Li
{"title":"Deep learning-based automatic ASPECTS calculation can improve diagnosis efficiency in patients with acute ischemic stroke: a multicenter study.","authors":"Jianyong Wei, Kai Shang, Xiaoer Wei, Yueqi Zhu, Yang Yuan, Mengfei Wang, Chengyu Ding, Lisong Dai, Zheng Sun, Xinsheng Mao, Fan Yu, Chunhong Hu, Duanduan Chen, Jie Lu, Yuehua Li","doi":"10.1007/s00330-024-10960-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The Alberta Stroke Program Early CT Score (ASPECTS), a systematic method for assessing ischemic changes in acute ischemic stroke using non-contrast computed tomography (NCCT), is often interpreted relying on expert experience and can vary between readers. This study aimed to develop a clinically applicable automatic ASPECTS system employing deep learning (DL).</p><p><strong>Methods: </strong>This study enrolled 1987 NCCT scans that were retrospectively collected from four centers between January 2017 and October 2021. A DL-based system for automated ASPECTS assessment was trained on a development cohort (N = 1767) and validated on an independent test cohort (N = 220). The consensus of experienced physicians was regarded as a reference standard. The validity and reliability of the proposed system were assessed against physicians' readings. A real-world prospective application study with 13,399 patients was used for system validation in clinical contexts.</p><p><strong>Results: </strong>The DL-based system achieved an area under the receiver operating characteristic curve (AUC) of 84.97% and an intraclass correlation coefficient (ICC) of 0.84 for overall-level analysis on the test cohort. The system's diagnostic sensitivity was 94.61% for patients with dichotomized ASPECTS at a threshold of ≥ 6, with substantial agreement (ICC = 0.65) with expert ratings. Combining the system with physicians improved AUC from 67.43 to 89.76%, reducing diagnosis time from 130.6 ± 66.3 s to 33.3 ± 8.3 s (p < 0.001). During the application in clinical contexts, 94.0% (12,591) of scans successfully processed by the system were utilized by clinicians, and 96% of physicians acknowledged significant improvement in work efficiency.</p><p><strong>Conclusion: </strong>The proposed DL-based system could accurately and rapidly determine ASPECTS, which might facilitate clinical workflow for early intervention.</p><p><strong>Clinical relevance statement: </strong>The deep learning-based automated ASPECTS evaluation system can accurately and rapidly determine ASPECTS for early intervention in clinical workflows, reducing processing time for physicians by 74.8%, but still requires validation by physicians when in clinical applications.</p><p><strong>Key points: </strong>The deep learning-based system for ASPECTS quantification has been shown to be non-inferior to expert-rated ASPECTS. This system improved the consistency of ASPECTS evaluation and reduced processing time to 33.3 seconds per scan. 94.0% of scans successfully processed by the system were utilized by clinicians during the prospective clinical application.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"627-639"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-10960-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The Alberta Stroke Program Early CT Score (ASPECTS), a systematic method for assessing ischemic changes in acute ischemic stroke using non-contrast computed tomography (NCCT), is often interpreted relying on expert experience and can vary between readers. This study aimed to develop a clinically applicable automatic ASPECTS system employing deep learning (DL).
Methods: This study enrolled 1987 NCCT scans that were retrospectively collected from four centers between January 2017 and October 2021. A DL-based system for automated ASPECTS assessment was trained on a development cohort (N = 1767) and validated on an independent test cohort (N = 220). The consensus of experienced physicians was regarded as a reference standard. The validity and reliability of the proposed system were assessed against physicians' readings. A real-world prospective application study with 13,399 patients was used for system validation in clinical contexts.
Results: The DL-based system achieved an area under the receiver operating characteristic curve (AUC) of 84.97% and an intraclass correlation coefficient (ICC) of 0.84 for overall-level analysis on the test cohort. The system's diagnostic sensitivity was 94.61% for patients with dichotomized ASPECTS at a threshold of ≥ 6, with substantial agreement (ICC = 0.65) with expert ratings. Combining the system with physicians improved AUC from 67.43 to 89.76%, reducing diagnosis time from 130.6 ± 66.3 s to 33.3 ± 8.3 s (p < 0.001). During the application in clinical contexts, 94.0% (12,591) of scans successfully processed by the system were utilized by clinicians, and 96% of physicians acknowledged significant improvement in work efficiency.
Conclusion: The proposed DL-based system could accurately and rapidly determine ASPECTS, which might facilitate clinical workflow for early intervention.
Clinical relevance statement: The deep learning-based automated ASPECTS evaluation system can accurately and rapidly determine ASPECTS for early intervention in clinical workflows, reducing processing time for physicians by 74.8%, but still requires validation by physicians when in clinical applications.
Key points: The deep learning-based system for ASPECTS quantification has been shown to be non-inferior to expert-rated ASPECTS. This system improved the consistency of ASPECTS evaluation and reduced processing time to 33.3 seconds per scan. 94.0% of scans successfully processed by the system were utilized by clinicians during the prospective clinical application.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.