Temporal interference electrical neurostimulation at 20 Hz beat frequency leads to increased fMRI BOLD activation in orbitofrontal cortex in humans

IF 7.6 1区 医学 Q1 CLINICAL NEUROLOGY
Priyamvada Modak , Justin Fine , Brayden Colon , Ella Need , Hu Cheng , Leslie Hulvershorn , Peter Finn , Joshua W. Brown
{"title":"Temporal interference electrical neurostimulation at 20 Hz beat frequency leads to increased fMRI BOLD activation in orbitofrontal cortex in humans","authors":"Priyamvada Modak ,&nbsp;Justin Fine ,&nbsp;Brayden Colon ,&nbsp;Ella Need ,&nbsp;Hu Cheng ,&nbsp;Leslie Hulvershorn ,&nbsp;Peter Finn ,&nbsp;Joshua W. Brown","doi":"10.1016/j.brs.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal interference electrical neurostimulation (TI) is a relatively new method of non-invasive neurostimulation that may be able to stimulate deep brain regions without stimulating the overlying superficial regions. Although some recent studies have demonstrated the success of TI in modulating task-induced BOLD activity in humans, there is limited information on intended and off-target effects of TI during resting-state. We simultaneously performed TI stimulation with the set-up optimized for maximum focality in the left caudate and collected resting-state fMRI data to investigate the effects of TI on human BOLD signals. We found increased BOLD activation in a part of the mid-orbitofrontal cortex (OFC) and parahippocampal gyrus. Results indicate that TI can induce increased BOLD activation in the region that receives the highest magnitude of TI amplitude modulation in humans, with good safety and tolerability profiles. We also show the limits of spatial precision and explore the nature and causes of additional off-target effects. TI may be a promising approach for addressing questions about the causal role of deep brain structures in human cognition and may also afford new clinical treatments.</p></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"17 4","pages":"Pages 867-875"},"PeriodicalIF":7.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1935861X2400130X/pdfft?md5=1e867e69c12edf8ec0b3d30c48ecedf6&pid=1-s2.0-S1935861X2400130X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X2400130X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal interference electrical neurostimulation (TI) is a relatively new method of non-invasive neurostimulation that may be able to stimulate deep brain regions without stimulating the overlying superficial regions. Although some recent studies have demonstrated the success of TI in modulating task-induced BOLD activity in humans, there is limited information on intended and off-target effects of TI during resting-state. We simultaneously performed TI stimulation with the set-up optimized for maximum focality in the left caudate and collected resting-state fMRI data to investigate the effects of TI on human BOLD signals. We found increased BOLD activation in a part of the mid-orbitofrontal cortex (OFC) and parahippocampal gyrus. Results indicate that TI can induce increased BOLD activation in the region that receives the highest magnitude of TI amplitude modulation in humans, with good safety and tolerability profiles. We also show the limits of spatial precision and explore the nature and causes of additional off-target effects. TI may be a promising approach for addressing questions about the causal role of deep brain structures in human cognition and may also afford new clinical treatments.

节拍频率为 20 赫兹的颞叶干扰神经电刺激会导致人类眶额皮层的 fMRI BOLD 激活增加。
颞叶干扰神经电刺激(TI)是一种相对较新的非侵入性神经刺激方法,它可以刺激大脑深部区域而不刺激上覆的浅表区域。虽然最近的一些研究已经证明 TI 能够成功调节人类任务诱导的 BOLD 活动,但关于 TI 在静息状态下的预期效应和非目标效应的信息还很有限。我们同时进行了 TI 刺激,优化了设置,以在左尾状核实现最大聚焦,并收集了静息态 fMRI 数据,以研究 TI 对人体 BOLD 信号的影响。我们发现轨道额叶皮层中部(OFC)和海马旁回的部分 BOLD 激活增加。结果表明,TI 可以诱导人体中接受 TI 振幅调制幅度最大的区域的 BOLD 激活增加,而且具有良好的安全性和耐受性。我们还显示了空间精确度的局限性,并探讨了其他脱靶效应的性质和原因。TI 可能是解决大脑深层结构在人类认知中的因果作用问题的一种有前途的方法,也可能提供新的临床治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Stimulation
Brain Stimulation 医学-临床神经学
CiteScore
13.10
自引率
9.10%
发文量
256
审稿时长
72 days
期刊介绍: Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation. Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信