Jianhua Xiong, Zhaosheng Luo, Guanzhong Luo, Xiaofeng Yu, Yujun Li
{"title":"An exploratory Q-matrix estimation method based on sparse non-negative matrix factorization.","authors":"Jianhua Xiong, Zhaosheng Luo, Guanzhong Luo, Xiaofeng Yu, Yujun Li","doi":"10.3758/s13428-024-02442-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive diagnostic assessment (CDA) is widely used because it can provide refined diagnostic information. The Q-matrix is the basis of CDA, and can be specified by domain experts or by data-driven estimation methods based on observed response data. The data-driven Q-matrix estimation methods have become a research hotspot because of their objectivity, accuracy, and low calibration cost. However, most of the existing data-driven methods require known prior knowledge, such as initial Q-matrix, partial q-vector, or the number of attributes. Under the G-DINA model, we propose to estimate the number of attributes and Q-matrix elements simultaneously without any prior knowledge by the sparse non-negative matrix factorization (SNMF) method, which has the advantage of high scalability and universality. Simulation studies are carried out to investigate the performance of the SNMF. The results under a wide variety of simulation conditions indicate that the SNMF has good performance in the accuracy of attribute number and Q-matrix elements estimation. In addition, a set of real data is taken as an example to illustrate its application. Finally, we discuss the limitations of the current study and directions for future research.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02442-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive diagnostic assessment (CDA) is widely used because it can provide refined diagnostic information. The Q-matrix is the basis of CDA, and can be specified by domain experts or by data-driven estimation methods based on observed response data. The data-driven Q-matrix estimation methods have become a research hotspot because of their objectivity, accuracy, and low calibration cost. However, most of the existing data-driven methods require known prior knowledge, such as initial Q-matrix, partial q-vector, or the number of attributes. Under the G-DINA model, we propose to estimate the number of attributes and Q-matrix elements simultaneously without any prior knowledge by the sparse non-negative matrix factorization (SNMF) method, which has the advantage of high scalability and universality. Simulation studies are carried out to investigate the performance of the SNMF. The results under a wide variety of simulation conditions indicate that the SNMF has good performance in the accuracy of attribute number and Q-matrix elements estimation. In addition, a set of real data is taken as an example to illustrate its application. Finally, we discuss the limitations of the current study and directions for future research.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.