{"title":"Analysis of the leapfrog-Verlet method applied to the Kuwabara-Kono force model in discrete element method simulations of granular materials","authors":"Gabriel Nóbrega Bufolo, Yuri Dumaresq Sobral","doi":"10.1007/s10444-024-10162-3","DOIUrl":null,"url":null,"abstract":"<div><p>The discrete element method (DEM) is a numerical technique widely used to simulate granular materials. The temporal evolution of these simulations is often performed using a Verlet-type algorithm, because of its second order and its desirable property of better energy conservation. However, when dissipative forces are considered in the model, such as the nonlinear Kuwabara-Kono model, the Verlet method no longer behaves as a second order method, but instead its order decreases to 1.5. This is caused by the singular behavior of the derivative of the damping force in the Kuwabara-Kono model at the beginning of particle collisions. In this work, we introduce a simplified problem which reproduces the singularity of the Kuwabara-Kono model and prove that the order of the method decreases from 2 to <span>\\(1+q\\)</span>, where <span>\\(0< q < 1\\)</span> is the exponent of the nonlinear singular term.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10162-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The discrete element method (DEM) is a numerical technique widely used to simulate granular materials. The temporal evolution of these simulations is often performed using a Verlet-type algorithm, because of its second order and its desirable property of better energy conservation. However, when dissipative forces are considered in the model, such as the nonlinear Kuwabara-Kono model, the Verlet method no longer behaves as a second order method, but instead its order decreases to 1.5. This is caused by the singular behavior of the derivative of the damping force in the Kuwabara-Kono model at the beginning of particle collisions. In this work, we introduce a simplified problem which reproduces the singularity of the Kuwabara-Kono model and prove that the order of the method decreases from 2 to \(1+q\), where \(0< q < 1\) is the exponent of the nonlinear singular term.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.