Carolina Benetti, Alberto Blay, Luciana Correa, Marco Aurelio Verlangieri, Moisés O. dos Santos, Sergei G. Kazarian, Denise M. Zezell
{"title":"ATR-FTIR spectroscopy imaging of bone repair in mandibular laser-osteotomy","authors":"Carolina Benetti, Alberto Blay, Luciana Correa, Marco Aurelio Verlangieri, Moisés O. dos Santos, Sergei G. Kazarian, Denise M. Zezell","doi":"10.1002/jbio.202400066","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to verify the effectiveness of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy in the characterization of bone repair in mandibular osteotomy using erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser and multilaminate drill on each side. Two mandible bone fragments were removed from 30 rabbits, and the process of bone repair was studied immediately, 3, 7, 15, 21, and 28 days after the surgery. The histological analysis allowed detecting differences in the early stages of tissue repair after bone cutting performed with the Er,Cr:YSGG laser or multilaminate drill. The ATR-FTIR spectroscopy technique was sensitive to changes in the organic content of bone tissue repair process.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to verify the effectiveness of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy in the characterization of bone repair in mandibular osteotomy using erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser and multilaminate drill on each side. Two mandible bone fragments were removed from 30 rabbits, and the process of bone repair was studied immediately, 3, 7, 15, 21, and 28 days after the surgery. The histological analysis allowed detecting differences in the early stages of tissue repair after bone cutting performed with the Er,Cr:YSGG laser or multilaminate drill. The ATR-FTIR spectroscopy technique was sensitive to changes in the organic content of bone tissue repair process.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.