Inferring ecological selection from multidimensional community trait distributions along environmental gradients

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2024-07-26 DOI:10.1002/ecy.4378
Elina Kaarlejärvi, Malcolm Itter, Tiina Tonteri, Leena Hamberg, Maija Salemaa, Päivi Merilä, Jarno Vanhatalo, Anna-Liisa Laine
{"title":"Inferring ecological selection from multidimensional community trait distributions along environmental gradients","authors":"Elina Kaarlejärvi,&nbsp;Malcolm Itter,&nbsp;Tiina Tonteri,&nbsp;Leena Hamberg,&nbsp;Maija Salemaa,&nbsp;Päivi Merilä,&nbsp;Jarno Vanhatalo,&nbsp;Anna-Liisa Laine","doi":"10.1002/ecy.4378","DOIUrl":null,"url":null,"abstract":"<p>Understanding the drivers of community assembly is critical for predicting the future of biodiversity and ecosystem services. Ecological selection ubiquitously shapes communities by selecting for individuals with the most suitable trait combinations. Detecting selection types on key traits across environmental gradients and over time has the potential to reveal the underlying abiotic and biotic drivers of community dynamics. Here, we present a model-based predictive framework to quantify the multidimensional trait distributions of communities (community trait spaces), which we use to identify ecological selection types shaping communities along environmental gradients. We apply the framework to over 3600 boreal forest understory plant communities with results indicating that directional, stabilizing, and divergent selection all modify community trait distributions and that the selection type acting on individual traits may change over time. Our results provide novel and rare empirical evidence for divergent selection within a natural system. Our approach provides a framework for identifying key traits under selection and facilitates the detection of processes underlying community dynamics.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4378","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4378","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the drivers of community assembly is critical for predicting the future of biodiversity and ecosystem services. Ecological selection ubiquitously shapes communities by selecting for individuals with the most suitable trait combinations. Detecting selection types on key traits across environmental gradients and over time has the potential to reveal the underlying abiotic and biotic drivers of community dynamics. Here, we present a model-based predictive framework to quantify the multidimensional trait distributions of communities (community trait spaces), which we use to identify ecological selection types shaping communities along environmental gradients. We apply the framework to over 3600 boreal forest understory plant communities with results indicating that directional, stabilizing, and divergent selection all modify community trait distributions and that the selection type acting on individual traits may change over time. Our results provide novel and rare empirical evidence for divergent selection within a natural system. Our approach provides a framework for identifying key traits under selection and facilitates the detection of processes underlying community dynamics.

Abstract Image

从沿环境梯度的多维群落性状分布推断生态选择。
了解群落组合的驱动因素对于预测生物多样性和生态系统服务的未来至关重要。生态选择通过选择具有最合适性状组合的个体来塑造群落。检测跨环境梯度和跨时间的关键性状选择类型有可能揭示群落动态的潜在非生物和生物驱动因素。在此,我们提出了一个基于模型的预测框架,以量化群落的多维性状分布(群落性状空间),并利用该框架来识别沿环境梯度塑造群落的生态选择类型。我们将该框架应用于 3600 多个北方森林林下植物群落,结果表明定向选择、稳定选择和发散选择都会改变群落的性状分布,而且作用于个体性状的选择类型可能会随着时间的推移而改变。我们的研究结果为自然系统中的发散选择提供了新颖而罕见的经验证据。我们的方法提供了一个框架,可用于识别选择下的关键性状,并有助于检测群落动态的基本过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信