Biomimetic Marine-Sponge-Derived Spicule-Microparticle-Mediated Biomineralization and YAP/TAZ Pathway for Bone Regeneration In Vivo.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2024-07-25 eCollection Date: 2024-01-01 DOI:10.34133/bmr.0056
Sumi Choi, Jung Hun Kim, Tae Hoon Kang, Young-Hyeon An, Sang Jin Lee, Nathaniel S Hwang, Su-Hwan Kim
{"title":"Biomimetic Marine-Sponge-Derived Spicule-Microparticle-Mediated Biomineralization and YAP/TAZ Pathway for Bone Regeneration In Vivo.","authors":"Sumi Choi, Jung Hun Kim, Tae Hoon Kang, Young-Hyeon An, Sang Jin Lee, Nathaniel S Hwang, Su-Hwan Kim","doi":"10.34133/bmr.0056","DOIUrl":null,"url":null,"abstract":"<p><p>Marine-sponge-derived spicule microparticles (SPMs) possess unique structural and compositional features suitable for bone tissue engineering. However, significant challenges remain in establishing their osteogenic mechanism and practical application in animal models. This study explores the biomimetic potential of SPM in orchestrating biomineralization behavior and modulating the Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway both in vitro and in vivo. Characterization of SPM revealed a structure comprising amorphous silica oxide mixed with collagen and trace amounts of calcium and phosphate ions, which have the potential to facilitate biomineralization. Structural analysis indicated dynamic biomineralization from SPM to hydroxyapatite, contributing to both in vitro and in vivo osteoconductions. In vitro assessment demonstrated dose-dependent increases in osteogenic gene expression and bone morphogenetic protein-2 protein in response to SPM. In addition, focal adhesion mediated by silica diatoms induced cell spreading on the surface of SPM, leading to cell alignment in the direction of SPM. Mechanical signals from SPM subsequently increased the expression of YAP/TAZ, thereby inducing osteogenic mechanotransduction. The osteogenic activity of SPM-reinforced injectable hydrogel was evaluated in a mouse calvaria defect model, demonstrating rapid vascularized bone regeneration. These findings suggest that biomimetic SPM holds significant promise for regenerating bone tissue.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0056"},"PeriodicalIF":8.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Marine-sponge-derived spicule microparticles (SPMs) possess unique structural and compositional features suitable for bone tissue engineering. However, significant challenges remain in establishing their osteogenic mechanism and practical application in animal models. This study explores the biomimetic potential of SPM in orchestrating biomineralization behavior and modulating the Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway both in vitro and in vivo. Characterization of SPM revealed a structure comprising amorphous silica oxide mixed with collagen and trace amounts of calcium and phosphate ions, which have the potential to facilitate biomineralization. Structural analysis indicated dynamic biomineralization from SPM to hydroxyapatite, contributing to both in vitro and in vivo osteoconductions. In vitro assessment demonstrated dose-dependent increases in osteogenic gene expression and bone morphogenetic protein-2 protein in response to SPM. In addition, focal adhesion mediated by silica diatoms induced cell spreading on the surface of SPM, leading to cell alignment in the direction of SPM. Mechanical signals from SPM subsequently increased the expression of YAP/TAZ, thereby inducing osteogenic mechanotransduction. The osteogenic activity of SPM-reinforced injectable hydrogel was evaluated in a mouse calvaria defect model, demonstrating rapid vascularized bone regeneration. These findings suggest that biomimetic SPM holds significant promise for regenerating bone tissue.

仿生海棉衍生微粒介导的生物矿化和 YAP/TAZ 途径促进体内骨再生
海洋海绵衍生的尖晶微粒(SPMs)具有独特的结构和组成特征,适合用于骨组织工程。然而,在确立其成骨作用机制以及在动物模型中的实际应用方面仍存在重大挑战。本研究探讨了SPM在体外和体内协调生物矿化行为和调节Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif(YAP/TAZ)通路的生物仿生潜力。SPM 的表征揭示了一种由无定形氧化硅与胶原蛋白以及微量钙离子和磷酸离子混合组成的结构,这种结构具有促进生物钙化的潜力。结构分析表明,从 SPM 到羟基磷灰石的动态生物矿化有助于体外和体内的骨诱导。体外评估表明,成骨基因表达和骨形态发生蛋白-2 蛋白的增加与 SPM 的剂量有关。此外,硅藻介导的局灶粘附作用诱导细胞在 SPM 表面扩散,导致细胞向 SPM 方向排列。随后,来自SPM的机械信号增加了YAP/TAZ的表达,从而诱导了成骨机械传导。在小鼠小腿缺损模型中对 SPM 增强注射水凝胶的成骨活性进行了评估,结果显示血管骨再生速度很快。这些研究结果表明,生物仿生 SPM 在骨组织再生方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信