Rúben Francisco, Filipe Jesus, Paulo Santos, Pia Trbovšek, Alexandre S Moreira, Catarina L Nunes, Marta Alvim, Luís B Sardinha, Henry Lukaski, Gonçalo V Mendonca, Analiza M Silva
{"title":"Does acute dehydration affect the neuromuscular function in healthy adults?-a systematic review.","authors":"Rúben Francisco, Filipe Jesus, Paulo Santos, Pia Trbovšek, Alexandre S Moreira, Catarina L Nunes, Marta Alvim, Luís B Sardinha, Henry Lukaski, Gonçalo V Mendonca, Analiza M Silva","doi":"10.1139/apnm-2024-0192","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of acute dehydration on neuromuscular function have been studied. However, whether the mechanisms underpinning such function are central or peripheral is still being determined, and the results are inconsistent. This systematic review aims to elucidate the influence of acute dehydration on neuromuscular function, including a novel aspect of investigating the central and peripheral neuromuscular mechanisms. Three databases were used for the article search: PubMed, Web of Science, and Scopus. Studies were included if they had objective measurements of dehydration, muscle performance, and electromyography data or transcranial magnetic stimulation or peripheral nerve stimulation measurements with healthy individuals aged 18-65 years. Twenty-three articles met the eligibility criteria. The studies exhibited considerable heterogeneity in the methods used to induce and quantify dehydration. Despite being inconsistent, the literature shows some evidence that acute dehydration does not affect maximal strength during isometric or moderate-speed isokinetic contractions. Conversely, acute dehydration significantly reduces maximal strength during slow-speed isokinetic contractions and fatigue resistance in response to endurance tasks. The studies report that dehydration does not affect the motor cortical output or spinal circuity. The effects occur at the peripheral level within the muscle.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":"1441-1460"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of acute dehydration on neuromuscular function have been studied. However, whether the mechanisms underpinning such function are central or peripheral is still being determined, and the results are inconsistent. This systematic review aims to elucidate the influence of acute dehydration on neuromuscular function, including a novel aspect of investigating the central and peripheral neuromuscular mechanisms. Three databases were used for the article search: PubMed, Web of Science, and Scopus. Studies were included if they had objective measurements of dehydration, muscle performance, and electromyography data or transcranial magnetic stimulation or peripheral nerve stimulation measurements with healthy individuals aged 18-65 years. Twenty-three articles met the eligibility criteria. The studies exhibited considerable heterogeneity in the methods used to induce and quantify dehydration. Despite being inconsistent, the literature shows some evidence that acute dehydration does not affect maximal strength during isometric or moderate-speed isokinetic contractions. Conversely, acute dehydration significantly reduces maximal strength during slow-speed isokinetic contractions and fatigue resistance in response to endurance tasks. The studies report that dehydration does not affect the motor cortical output or spinal circuity. The effects occur at the peripheral level within the muscle.