Abhinav Patel, Ramez N Abdalla, Sammy Allaw, Donald R Cantrell, Ali Shaibani, Frances Caprio, David M Hasan, Ali Alaraj, Sean P Polster, Timothy J Carroll, Sameer A Ansari
{"title":"Temporal Changes on Postgadolinium MR Vessel Wall Imaging Captures Enhancement Kinetics of Intracranial Atherosclerotic Plaques and Aneurysms.","authors":"Abhinav Patel, Ramez N Abdalla, Sammy Allaw, Donald R Cantrell, Ali Shaibani, Frances Caprio, David M Hasan, Ali Alaraj, Sean P Polster, Timothy J Carroll, Sameer A Ansari","doi":"10.3174/ajnr.A8370","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Analysis of vessel wall contrast kinetics (ie, wash-in/washout) is a promising method for the diagnosis and risk-stratification of intracranial atherosclerotic disease plaque (ICAD-P) and the intracranial aneurysm walls (IA-W). We used black-blood MR imaging or MR vessel wall imaging to evaluate the temporal relationship of gadolinium contrast uptake kinetics in ICAD-Ps and IA-Ws compared with normal anatomic reference structures.</p><p><strong>Materials and methods: </strong>Patients with ICAD-Ps or IAs who underwent MR vessel wall imaging with precontrast, early postcontrast (5-15 minutes), and delayed postcontrast (20-30 minutes) 3D T1-weighted TSE sequences were retrospectively studied. ROIs of a standardized diameter (2 mm) were used to measure the signal intensities of the cavernous sinus, pituitary infundibulum, temporalis muscle, and choroid plexus. Point ROIs were used for ICAD-Ps and IA-Ws. All ROI signal intensities were normalized to white matter signal intensity obtained using ROIs of 10-mm diameter. Measurements were acquired on precontrast, early postcontrast, and delayed postcontrast 3D T1 TSE sequences for each patient.ajnr;45/9/1206/T1T1T1Table 1:MR-VWI parameters for ICAD-Ps and IAsParameterValueSequence3D TSEScan planeAxialFOV (mm)160TR/TE (ms)800/28-32BW (Hx/pixel)370θ120Acceleration2ETL42Matrix acquisition0.5 mm ×0.5 mmMatrix recon0.5 mm ×0.5 mmNo. of slices/thick120/0.5<b>Note:</b>-FOV indicates field of view; TR, the repetition time; TE, the echo time; BW, bandwidth; ETL, echo train length; Matrix recon, matrix reconstruction.</p><p><strong>Results: </strong>Ten patients with 17 symptomatic ICAD-Ps and 30 patients with 34 IA-Ws were included and demonstrated persisting contrast uptake (<i>P </i>< .001) of 7.21% and 10.54% beyond the early phase (5-15 minutes postcontrast) and in the delayed phase (20-30 minutes postcontrast) on postcontrast MR vessel wall imaging. However, normal anatomic reference structures including the pituitary infundibulum and cavernous sinus demonstrated a paradoxical contrast washout in the delayed phase. In both ICAD-Ps and IA-Ws, the greatest percentage of quantitative enhancement (>70%-90%) occurred in the early phase of postcontrast imaging, consistent with the rapid contrast uptake kinetics of neurovascular pathology.</p><p><strong>Conclusions: </strong>Using standard MR vessel wall imaging techniques, our results demonstrate the effects of gadolinium contrast uptake kinetics in ICAD-Ps and IA-Ws with extended accumulating enhancement into the delayed phase (> 15 minutes) as opposed to normal anatomic reference structures that conversely exhibit decreasing enhancement. Because these relative differences are used to assess qualitative patterns of ICAD-P and IA-W enhancement, our findings highlight the importance of standardizing acquisition time points and MR vessel wall imaging protocols to interpret pathologic enhancement for the risk stratification of cerebrovascular pathologies.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Analysis of vessel wall contrast kinetics (ie, wash-in/washout) is a promising method for the diagnosis and risk-stratification of intracranial atherosclerotic disease plaque (ICAD-P) and the intracranial aneurysm walls (IA-W). We used black-blood MR imaging or MR vessel wall imaging to evaluate the temporal relationship of gadolinium contrast uptake kinetics in ICAD-Ps and IA-Ws compared with normal anatomic reference structures.
Materials and methods: Patients with ICAD-Ps or IAs who underwent MR vessel wall imaging with precontrast, early postcontrast (5-15 minutes), and delayed postcontrast (20-30 minutes) 3D T1-weighted TSE sequences were retrospectively studied. ROIs of a standardized diameter (2 mm) were used to measure the signal intensities of the cavernous sinus, pituitary infundibulum, temporalis muscle, and choroid plexus. Point ROIs were used for ICAD-Ps and IA-Ws. All ROI signal intensities were normalized to white matter signal intensity obtained using ROIs of 10-mm diameter. Measurements were acquired on precontrast, early postcontrast, and delayed postcontrast 3D T1 TSE sequences for each patient.ajnr;45/9/1206/T1T1T1Table 1:MR-VWI parameters for ICAD-Ps and IAsParameterValueSequence3D TSEScan planeAxialFOV (mm)160TR/TE (ms)800/28-32BW (Hx/pixel)370θ120Acceleration2ETL42Matrix acquisition0.5 mm ×0.5 mmMatrix recon0.5 mm ×0.5 mmNo. of slices/thick120/0.5Note:-FOV indicates field of view; TR, the repetition time; TE, the echo time; BW, bandwidth; ETL, echo train length; Matrix recon, matrix reconstruction.
Results: Ten patients with 17 symptomatic ICAD-Ps and 30 patients with 34 IA-Ws were included and demonstrated persisting contrast uptake (P < .001) of 7.21% and 10.54% beyond the early phase (5-15 minutes postcontrast) and in the delayed phase (20-30 minutes postcontrast) on postcontrast MR vessel wall imaging. However, normal anatomic reference structures including the pituitary infundibulum and cavernous sinus demonstrated a paradoxical contrast washout in the delayed phase. In both ICAD-Ps and IA-Ws, the greatest percentage of quantitative enhancement (>70%-90%) occurred in the early phase of postcontrast imaging, consistent with the rapid contrast uptake kinetics of neurovascular pathology.
Conclusions: Using standard MR vessel wall imaging techniques, our results demonstrate the effects of gadolinium contrast uptake kinetics in ICAD-Ps and IA-Ws with extended accumulating enhancement into the delayed phase (> 15 minutes) as opposed to normal anatomic reference structures that conversely exhibit decreasing enhancement. Because these relative differences are used to assess qualitative patterns of ICAD-P and IA-W enhancement, our findings highlight the importance of standardizing acquisition time points and MR vessel wall imaging protocols to interpret pathologic enhancement for the risk stratification of cerebrovascular pathologies.