{"title":"The role of nicotinamide adenine dinucleotide salvage enzymes in cardioprotection.","authors":"Fazle Kibria, Sudip Kumar Das, Md Sahidul Arefin","doi":"10.5114/kitp.2024.141145","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD<sup>+</sup>) and reduction (NADH) reactions. NAD<sup>+</sup> plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for <i>de-novo</i> NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.</p>","PeriodicalId":49945,"journal":{"name":"Kardiochirurgia I Torakochirurgia Polska","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kardiochirurgia I Torakochirurgia Polska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/kitp.2024.141145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD+) and reduction (NADH) reactions. NAD+ plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for de-novo NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.
期刊介绍:
Polish Journal of Thoracic and Cardiovascular Surgery is a quarterly aimed at cardiologists, cardiosurgeons and thoracic surgeons. Includes the original works (experimental, research and development), illustrative and casuistical works about cardiology and cardiosurgery.