Maternal regulation of the vertebrate oocyte-to-embryo transition.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2024-07-25 eCollection Date: 2024-07-01 DOI:10.1371/journal.pgen.1011343
Ricardo Fuentes, Florence L Marlow, Elliott W Abrams, Hong Zhang, Manami Kobayashi, Tripti Gupta, Lee D Kapp, Zachary DiNardo, Ronald Heller, Ruth Cisternas, Priscila García-Castro, Fabián Segovia-Miranda, Felipe Montecinos-Franjola, William Vought, Charles E Vejnar, Antonio J Giraldez, Mary C Mullins
{"title":"Maternal regulation of the vertebrate oocyte-to-embryo transition.","authors":"Ricardo Fuentes, Florence L Marlow, Elliott W Abrams, Hong Zhang, Manami Kobayashi, Tripti Gupta, Lee D Kapp, Zachary DiNardo, Ronald Heller, Ruth Cisternas, Priscila García-Castro, Fabián Segovia-Miranda, Felipe Montecinos-Franjola, William Vought, Charles E Vejnar, Antonio J Giraldez, Mary C Mullins","doi":"10.1371/journal.pgen.1011343","DOIUrl":null,"url":null,"abstract":"<p><p>Maternally-loaded factors in the egg accumulate during oogenesis and are essential for the acquisition of oocyte and egg developmental competence to ensure the production of viable embryos. However, their molecular nature and functional importance remain poorly understood. Here, we present a collection of 9 recessive maternal-effect mutants identified in a zebrafish forward genetic screen that reveal unique molecular insights into the mechanisms controlling the vertebrate oocyte-to-embryo transition. Four genes, over easy, p33bjta, poached and black caviar, were found to control initial steps in yolk globule sizing and protein cleavage during oocyte maturation that act independently of nuclear maturation. The krang, kazukuram, p28tabj, and spotty genes play distinct roles in egg activation, including cortical granule biology, cytoplasmic segregation, the regulation of microtubule organizing center assembly and microtubule nucleation, and establishing the basic body plan. Furthermore, we cloned two of the mutant genes, identifying the over easy gene as a subunit of the Adaptor Protein complex 5, Ap5m1, which implicates it in regulating intracellular trafficking and yolk vesicle formation. The novel maternal protein Krang/Kiaa0513, highly conserved in metazoans, was discovered and linked to the function of cortical granules during egg activation. These mutant genes represent novel genetic entry points to decipher the molecular mechanisms functioning in the oocyte-to-embryo transition, fertility, and human disease. Additionally, our genetic adult screen not only contributes to the existing knowledge in the field but also sets the basis for future investigations. Thus, the identified maternal genes represent key players in the coordination and execution of events prior to fertilization.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 7","pages":"e1011343"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011343","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Maternally-loaded factors in the egg accumulate during oogenesis and are essential for the acquisition of oocyte and egg developmental competence to ensure the production of viable embryos. However, their molecular nature and functional importance remain poorly understood. Here, we present a collection of 9 recessive maternal-effect mutants identified in a zebrafish forward genetic screen that reveal unique molecular insights into the mechanisms controlling the vertebrate oocyte-to-embryo transition. Four genes, over easy, p33bjta, poached and black caviar, were found to control initial steps in yolk globule sizing and protein cleavage during oocyte maturation that act independently of nuclear maturation. The krang, kazukuram, p28tabj, and spotty genes play distinct roles in egg activation, including cortical granule biology, cytoplasmic segregation, the regulation of microtubule organizing center assembly and microtubule nucleation, and establishing the basic body plan. Furthermore, we cloned two of the mutant genes, identifying the over easy gene as a subunit of the Adaptor Protein complex 5, Ap5m1, which implicates it in regulating intracellular trafficking and yolk vesicle formation. The novel maternal protein Krang/Kiaa0513, highly conserved in metazoans, was discovered and linked to the function of cortical granules during egg activation. These mutant genes represent novel genetic entry points to decipher the molecular mechanisms functioning in the oocyte-to-embryo transition, fertility, and human disease. Additionally, our genetic adult screen not only contributes to the existing knowledge in the field but also sets the basis for future investigations. Thus, the identified maternal genes represent key players in the coordination and execution of events prior to fertilization.

母体对脊椎动物卵母细胞到胚胎转变的调控。
卵子中的母源负荷因子在卵子发生过程中不断积累,对于获得卵母细胞和卵子的发育能力以确保产生可存活的胚胎至关重要。然而,人们对它们的分子性质和功能重要性仍然知之甚少。在这里,我们展示了一组在斑马鱼正向遗传筛选中发现的 9 个隐性母性效应突变体,它们揭示了控制脊椎动物卵母细胞到胚胎转变机制的独特分子见解。研究发现,over easy、p33bjta、poached 和 black caviar 这三个基因控制着卵母细胞成熟过程中卵黄球大小和蛋白质裂解的初始步骤,这些步骤与核成熟无关。krang、kazukuram、p28tabj和spotty基因在卵子活化过程中发挥着不同的作用,包括皮质颗粒生物学、细胞质分离、微管组织中心组装和微管成核的调控以及基本体型的建立。此外,我们还克隆了两个突变基因,确定了过易基因是适配蛋白复合物5 Ap5m1的一个亚基,这与它调控细胞内贩运和卵黄囊泡形成有关。发现的新型母体蛋白 Krang/Kiaa0513 在后生动物中高度保守,与卵子活化过程中皮质颗粒的功能有关。这些突变基因代表了新的基因切入点,可用于破译卵母细胞向胚胎转化、生育和人类疾病的分子机制。此外,我们的基因成体筛选不仅丰富了该领域的现有知识,还为未来的研究奠定了基础。因此,鉴定出的母体基因代表了受精前协调和执行事件的关键角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信