Gayathri K, Uma Maheswari N, Venkatesh R, Ganesh Prabu B
{"title":"Fine grained automatic left ventricle segmentation via ROI based Tri-Convolutional neural networks.","authors":"Gayathri K, Uma Maheswari N, Venkatesh R, Ganesh Prabu B","doi":"10.3233/THC-240062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The left ventricle segmentation (LVS) is crucial to the assessment of cardiac function. Globally, cardiovascular disease accounts for the majority of deaths, posing a significant health threat. In recent years, LVS has gained important attention due to its ability to measure vital parameters such as myocardial mass, end-diastolic volume, and ejection fraction. Medical professionals realize that manually segmenting data to evaluate these processes takes a lot of time, effort when diagnosing heart diseases. Yet, manually segmenting these images is labour-intensive and may reduce diagnostic accuracy.</p><p><strong>Objective/methods: </strong>This paper, propose a combination of different deep neural networks for semantic segmentation of the left ventricle based on Tri-Convolutional Networks (Tri-ConvNets) to obtain highly accurate segmentation. CMRI images are initially pre-processed to remove noise artefacts and enhance image quality, then ROI-based extraction is done in three stages to accurately identify the LV. The extracted features are given as input to three different deep learning structures for segmenting the LV in an efficient way. The contour edges are processed in the standard ConvNet, the contour points are processed using Fully ConvNet and finally the noise free images are converted into patches to perform pixel-wise operations in ConvNets.</p><p><strong>Results/conclusions: </strong>The proposed Tri-ConvNets model achieves the Jaccard indices of 0.9491 ± 0.0188 for the sunny brook dataset and 0.9497 ± 0.0237 for the York dataset, and the dice index of 0.9419 ± 0.0178 for the ACDC dataset and 0.9414 ± 0.0247 for LVSC dataset respectively. The experimental results also reveal that the proposed Tri-ConvNets model is faster and requires minimal resources compared to state-of-the-art models.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"4267-4289"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613063/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The left ventricle segmentation (LVS) is crucial to the assessment of cardiac function. Globally, cardiovascular disease accounts for the majority of deaths, posing a significant health threat. In recent years, LVS has gained important attention due to its ability to measure vital parameters such as myocardial mass, end-diastolic volume, and ejection fraction. Medical professionals realize that manually segmenting data to evaluate these processes takes a lot of time, effort when diagnosing heart diseases. Yet, manually segmenting these images is labour-intensive and may reduce diagnostic accuracy.
Objective/methods: This paper, propose a combination of different deep neural networks for semantic segmentation of the left ventricle based on Tri-Convolutional Networks (Tri-ConvNets) to obtain highly accurate segmentation. CMRI images are initially pre-processed to remove noise artefacts and enhance image quality, then ROI-based extraction is done in three stages to accurately identify the LV. The extracted features are given as input to three different deep learning structures for segmenting the LV in an efficient way. The contour edges are processed in the standard ConvNet, the contour points are processed using Fully ConvNet and finally the noise free images are converted into patches to perform pixel-wise operations in ConvNets.
Results/conclusions: The proposed Tri-ConvNets model achieves the Jaccard indices of 0.9491 ± 0.0188 for the sunny brook dataset and 0.9497 ± 0.0237 for the York dataset, and the dice index of 0.9419 ± 0.0178 for the ACDC dataset and 0.9414 ± 0.0247 for LVSC dataset respectively. The experimental results also reveal that the proposed Tri-ConvNets model is faster and requires minimal resources compared to state-of-the-art models.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).