Underexplored Molecular Mechanisms of Toxicity.

IF 6.8 Q1 TOXICOLOGY
Olatunbosun Arowolo, Alexander Suvorov
{"title":"Underexplored Molecular Mechanisms of Toxicity.","authors":"Olatunbosun Arowolo, Alexander Suvorov","doi":"10.3390/jox14030052","DOIUrl":null,"url":null,"abstract":"<p><p>Social biases may concentrate the attention of researchers on a small number of well-known molecules/mechanisms leaving others underexplored. In accordance with this view, central to mechanistic toxicology is a narrow range of molecular pathways that are assumed to be involved in a significant part of the responses to toxicity. It is unclear, however, if there are other molecular mechanisms which play an important role in toxicity events but are overlooked by toxicology. To identify overlooked genes sensitive to chemical exposures, we used publicly available databases. First, we used data on the published chemical-gene interactions for 17,338 genes to estimate their sensitivity to chemical exposures. Next, we extracted data on publication numbers per gene for 19,243 human genes from the Find My Understudied Genes database. Thresholds were applied to both datasets using our algorithm to identify chemically sensitive and chemically insensitive genes and well-studied and underexplored genes. A total of 1110 underexplored genes highly sensitive to chemical exposures were used in GSEA and Shiny GO analyses to identify enriched biological categories. The metabolism of fatty acids, amino acids, and glucose were identified as underexplored molecular mechanisms sensitive to chemical exposures. These findings suggest that future effort is needed to uncover the role of xenobiotics in the current epidemics of metabolic diseases.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"939-949"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14030052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Social biases may concentrate the attention of researchers on a small number of well-known molecules/mechanisms leaving others underexplored. In accordance with this view, central to mechanistic toxicology is a narrow range of molecular pathways that are assumed to be involved in a significant part of the responses to toxicity. It is unclear, however, if there are other molecular mechanisms which play an important role in toxicity events but are overlooked by toxicology. To identify overlooked genes sensitive to chemical exposures, we used publicly available databases. First, we used data on the published chemical-gene interactions for 17,338 genes to estimate their sensitivity to chemical exposures. Next, we extracted data on publication numbers per gene for 19,243 human genes from the Find My Understudied Genes database. Thresholds were applied to both datasets using our algorithm to identify chemically sensitive and chemically insensitive genes and well-studied and underexplored genes. A total of 1110 underexplored genes highly sensitive to chemical exposures were used in GSEA and Shiny GO analyses to identify enriched biological categories. The metabolism of fatty acids, amino acids, and glucose were identified as underexplored molecular mechanisms sensitive to chemical exposures. These findings suggest that future effort is needed to uncover the role of xenobiotics in the current epidemics of metabolic diseases.

未充分探索的毒性分子机制。
社会偏见可能会使研究人员将注意力集中在少数众所周知的分子/机制上,而对其他分子/机制的研究则不够深入。根据这一观点,机理毒理学的核心是假定参与大部分毒性反应的少数分子途径。然而,目前还不清楚是否还有其他分子机制在毒性事件中发挥着重要作用,但却被毒理学所忽视。为了确定被忽视的对化学物质暴露敏感的基因,我们使用了可公开获取的数据库。首先,我们利用已发表的 17,338 个基因的化学-基因相互作用数据来估计它们对化学暴露的敏感性。接着,我们从 "查找我研究不足的基因 "数据库中提取了 19,243 个人类基因的每个基因的发表数量数据。使用我们的算法对这两个数据集应用阈值,以识别对化学物质敏感的基因和对化学物质不敏感的基因,以及研究充分的基因和研究不足的基因。在 GSEA 和 Shiny GO 分析中,共使用了 1110 个对化学暴露高度敏感的未充分探索基因,以确定富集的生物类别。脂肪酸、氨基酸和葡萄糖的新陈代谢被确定为对化学品暴露敏感的未充分探索的分子机制。这些发现表明,今后需要努力揭示异生物在当前代谢性疾病流行中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信