Annemieke Christine Mulder, Lapo Mughini-Gras, Jan van de Kassteele, Sara Lynn Blanken, Roan Pijnacker, Eelco Franz
{"title":"Livestock-associated spatial risk factors for human salmonellosis and campylobacteriosis","authors":"Annemieke Christine Mulder, Lapo Mughini-Gras, Jan van de Kassteele, Sara Lynn Blanken, Roan Pijnacker, Eelco Franz","doi":"10.1111/zph.13170","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Most human infections with non-typhoid <i>Salmonella</i> (NTS) or <i>Campylobacter</i> are zoonotic in nature and acquired though consumption of contaminated food of mainly animal origin. However, individuals may also acquire salmonellosis or campylobacteriosis through non-foodborne transmission pathways, such as those mediated by the environment. This emphasizes the need to consider both direct and indirect exposure to livestock sources as a possible transmission route for NTS and <i>Campylobacter</i>. Therefore, this study aimed at assessing whether salmonellosis and campylobacteriosis incidence is spatially associated with exposure to livestock (i.e. small ruminants, dairy cows, veal calves, laying hens, broiler chickens and pigs) in the Netherlands for the years 2007–2019 and 2014–2019 respectively.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>Risk factors (population-weighted number of animals) and their population attributable fractions were determined using a Poisson regression model with a log-link function fitted using integrated nested Laplace approximation. The analyses were performed for different hexagonal sizes (90, 50, 25 and 10 km<sup>2</sup>) and accounted for geographical coverage of the diagnostic laboratory catchment areas. Moreover, serological data were used to look into the possible effects of acquired immunity due to repeated exposure to the pathogen through the environment that would potentially hinder the analyses based on the incidence of reported cases. A linear mixed-effects model was then fitted where the postal code areas were included as a random effect. Livestock was not consistently significantly associated with acquiring salmonellosis or campylobacteriosis in the Netherlands.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Results showed that living in livestock-rich areas in the Netherlands is not a consistently significant, spatially restricted risk factor for acquiring salmonellosis or campylobacteriosis, thereby supporting current knowledge that human infections with <i>Salmonella</i> and <i>Campylobacter</i> are mainly foodborne.</p>\n </section>\n </div>","PeriodicalId":24025,"journal":{"name":"Zoonoses and Public Health","volume":"71 8","pages":"876-899"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/zph.13170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoonoses and Public Health","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/zph.13170","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Most human infections with non-typhoid Salmonella (NTS) or Campylobacter are zoonotic in nature and acquired though consumption of contaminated food of mainly animal origin. However, individuals may also acquire salmonellosis or campylobacteriosis through non-foodborne transmission pathways, such as those mediated by the environment. This emphasizes the need to consider both direct and indirect exposure to livestock sources as a possible transmission route for NTS and Campylobacter. Therefore, this study aimed at assessing whether salmonellosis and campylobacteriosis incidence is spatially associated with exposure to livestock (i.e. small ruminants, dairy cows, veal calves, laying hens, broiler chickens and pigs) in the Netherlands for the years 2007–2019 and 2014–2019 respectively.
Methods and Results
Risk factors (population-weighted number of animals) and their population attributable fractions were determined using a Poisson regression model with a log-link function fitted using integrated nested Laplace approximation. The analyses were performed for different hexagonal sizes (90, 50, 25 and 10 km2) and accounted for geographical coverage of the diagnostic laboratory catchment areas. Moreover, serological data were used to look into the possible effects of acquired immunity due to repeated exposure to the pathogen through the environment that would potentially hinder the analyses based on the incidence of reported cases. A linear mixed-effects model was then fitted where the postal code areas were included as a random effect. Livestock was not consistently significantly associated with acquiring salmonellosis or campylobacteriosis in the Netherlands.
Conclusions
Results showed that living in livestock-rich areas in the Netherlands is not a consistently significant, spatially restricted risk factor for acquiring salmonellosis or campylobacteriosis, thereby supporting current knowledge that human infections with Salmonella and Campylobacter are mainly foodborne.
期刊介绍:
Zoonoses and Public Health brings together veterinary and human health researchers and policy-makers by providing a venue for publishing integrated and global approaches to zoonoses and public health. The Editors will consider papers that focus on timely collaborative and multi-disciplinary research in zoonoses and public health. This journal provides rapid publication of original papers, reviews, and potential discussion papers embracing this collaborative spirit. Papers should advance the scientific knowledge of the sources, transmission, prevention and control of zoonoses and be authored by scientists with expertise in areas such as microbiology, virology, parasitology and epidemiology. Articles that incorporate recent data into new methods, applications, or approaches (e.g. statistical modeling) which enhance public health are strongly encouraged.