{"title":"Graphene aerogels: part 2 - derived from commercial graphene and chemically reduced graphene oxide via supercritical carbon dioxide drying.","authors":"Meryem Samanci, Ayşe Bayrakçeken","doi":"10.55730/1300-0527.3660","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene aerogels (GAs), the most important class of carbonaceous aerogels, have attracted attention of many researchers due to their superior physical and chemical properties. In this study, commercial graphene (GR) and chemically reduced graphene oxide (RGO) were used as graphene-based precursor materials, unlike graphene oxide (GO), which is widely used in the literature in GA synthesis. GAs were synthesized using the sol-gel technique and dried with supercritical carbon dioxide (SCCO<sub>2</sub>). In addition, graphene-based materials were used in different ratios and their distribution in the aerogel matrix and its effect on surface properties were investigated. In addition, the synthesized GAs were structurally compared with GR, RGO, and carbon aerogel (CA) without graphene-based materials. Physical characterizations (Brunauer, Emmett, and Teller (BET) analysis, scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis, micro-Raman spectroscopy, X-ray diffractometer (XRD) were made to examine the structural properties of GAs. In order to analyze the behavior of the surfaces of the synthesized materials against electrochemical corrosion, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses were performed. As a result of the electrochemical corrosion process of the synthesized materials, the change in their specific capacitance and the formation of pseudocapacitive charge on the surfaces were examined.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene aerogels (GAs), the most important class of carbonaceous aerogels, have attracted attention of many researchers due to their superior physical and chemical properties. In this study, commercial graphene (GR) and chemically reduced graphene oxide (RGO) were used as graphene-based precursor materials, unlike graphene oxide (GO), which is widely used in the literature in GA synthesis. GAs were synthesized using the sol-gel technique and dried with supercritical carbon dioxide (SCCO2). In addition, graphene-based materials were used in different ratios and their distribution in the aerogel matrix and its effect on surface properties were investigated. In addition, the synthesized GAs were structurally compared with GR, RGO, and carbon aerogel (CA) without graphene-based materials. Physical characterizations (Brunauer, Emmett, and Teller (BET) analysis, scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis, micro-Raman spectroscopy, X-ray diffractometer (XRD) were made to examine the structural properties of GAs. In order to analyze the behavior of the surfaces of the synthesized materials against electrochemical corrosion, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses were performed. As a result of the electrochemical corrosion process of the synthesized materials, the change in their specific capacitance and the formation of pseudocapacitive charge on the surfaces were examined.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.