Kayla B Garrett, Justin Brown, Mourad Gabriel, Robert Dowler, J Clint Perkins, Dianna Krejsa, Michael J Yabsley
{"title":"Diversity of Babesia spp. in skunks from selected states in the United States of America.","authors":"Kayla B Garrett, Justin Brown, Mourad Gabriel, Robert Dowler, J Clint Perkins, Dianna Krejsa, Michael J Yabsley","doi":"10.1051/parasite/2024043","DOIUrl":null,"url":null,"abstract":"<p><p>Babesia species are intraerythrocytic protozoan parasites that infect a variety of hosts. The goal of this study was to evaluate the piroplasm species present in skunks in various states in the United States and determine whether there was any geographic variation. Spleen, whole blood, or blood on filter paper were received from Pennsylvania, Kentucky, North Carolina, South Carolina, Georgia, Missouri, Louisiana, Texas, Kansas, and California, and were tested for Babesia sp. We tested four species of skunks including striped skunk (Mephitis mephitis, n = 72), eastern spotted skunk (Spilogale putorius, n = 28), western spotted skunk (Spilogale gracilis, n = 15), and hog-nosed skunk (Conepatus leuconotus, n = 11). A PCR assay targeting the 18S rRNA region and cox1 region were used to determine if skunks were infected with piroplasms and for phylogenetic analyses. A total of 48.4% (61/126) of skunks tested positive for a Babesia species. Both the 18S and cox1 analysis supported a skunk-specific Babesia microti-like sp. of carnivores as well as a species in the B. microti complex that is phylogenetically unique from both B. microti of humans and the B. microti-like sp. of carnivores. In the 18S analysis, there was a third species of Babesia in hog-nosed skunks in the western piroplasm group. This study shows that at least three species of piroplasms occur in skunk species in the United States and further highlights the importance of phylogenetic analyses and the use of multiple gene targets when studying piroplasms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1051/parasite/2024043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Babesia species are intraerythrocytic protozoan parasites that infect a variety of hosts. The goal of this study was to evaluate the piroplasm species present in skunks in various states in the United States and determine whether there was any geographic variation. Spleen, whole blood, or blood on filter paper were received from Pennsylvania, Kentucky, North Carolina, South Carolina, Georgia, Missouri, Louisiana, Texas, Kansas, and California, and were tested for Babesia sp. We tested four species of skunks including striped skunk (Mephitis mephitis, n = 72), eastern spotted skunk (Spilogale putorius, n = 28), western spotted skunk (Spilogale gracilis, n = 15), and hog-nosed skunk (Conepatus leuconotus, n = 11). A PCR assay targeting the 18S rRNA region and cox1 region were used to determine if skunks were infected with piroplasms and for phylogenetic analyses. A total of 48.4% (61/126) of skunks tested positive for a Babesia species. Both the 18S and cox1 analysis supported a skunk-specific Babesia microti-like sp. of carnivores as well as a species in the B. microti complex that is phylogenetically unique from both B. microti of humans and the B. microti-like sp. of carnivores. In the 18S analysis, there was a third species of Babesia in hog-nosed skunks in the western piroplasm group. This study shows that at least three species of piroplasms occur in skunk species in the United States and further highlights the importance of phylogenetic analyses and the use of multiple gene targets when studying piroplasms.