Pan He, Hiroki Isobe, Gavin Kok Wai Koon, Jun You Tan, Junxiong Hu, Jingru Li, Naoto Nagaosa, Jian Shen
{"title":"Third-order nonlinear Hall effect in a quantum Hall system","authors":"Pan He, Hiroki Isobe, Gavin Kok Wai Koon, Jun You Tan, Junxiong Hu, Jingru Li, Naoto Nagaosa, Jian Shen","doi":"10.1038/s41565-024-01730-1","DOIUrl":null,"url":null,"abstract":"In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (Rxx) and Hall resistance (Rxy) plateaus quantized to h/(υe2) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck’s constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron–electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state. Monolayer graphene in the quantum Hall regime exhibits a third-order nonlinear Hall response, which is robust against variations in magnetic field and temperature and provides insights into the interaction of chiral edge states.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01730-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (Rxx) and Hall resistance (Rxy) plateaus quantized to h/(υe2) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck’s constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron–electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state. Monolayer graphene in the quantum Hall regime exhibits a third-order nonlinear Hall response, which is robust against variations in magnetic field and temperature and provides insights into the interaction of chiral edge states.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.