{"title":"Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells","authors":"Jialu Xu, Yue Yu, Yue Zhang, Huaxing Dai, Qianyu Yang, Beilei Wang, Qingle Ma, Yitong Chen, Fang Xu, Xiaolin Shi, Zhuang Liu, Chao Wang","doi":"10.1038/s41565-024-01722-1","DOIUrl":null,"url":null,"abstract":"Gamma-delta (γδ) T cell-based cancer immunotherapies represent a promising avenue for cancer treatment. However, their development is challenged by the limited expansion and differentiation of the cells ex vivo. Here we induced the endogenous expansion and activation of γδ T cells through oral administration of garlic-derived nanoparticles (GNPs). We found that GNPs could significantly promote the proliferation and activation of endogenous γδ T cells in the intestine, leading to generation of large amount of interferon-γ (IFNγ). Moreover GNP-treated mice showed increased levels of chemokine CXCR3 in intestinal γδ T cells, which can drive their migration from the gut to the tumour environment. The translocation of γδ T cells and IFNγ from the intestine to extraintestinal subcutaneous tumours remodels the tumour immune microenvironment and synergizes with anti-PD-L1, inducing robust antitumour immunity. Our study delineates mechanistic insight into the complex gut–tumour interactome and provides an alternative approach for γδ T cell-based immunotherapy. γδ T cell-based immunotherapies are limited by the reduced expansion and activation of the T cells ex vivo. Here the authors show that garlic nanoparticles can activate IFNγ-producing γδ T cells directly in the intestine, before they translocate to extraintestinal tumours, where they can synergize with anti-PD-L1 therapy, inducing robust antitumour immunity.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1569-1578"},"PeriodicalIF":38.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01722-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gamma-delta (γδ) T cell-based cancer immunotherapies represent a promising avenue for cancer treatment. However, their development is challenged by the limited expansion and differentiation of the cells ex vivo. Here we induced the endogenous expansion and activation of γδ T cells through oral administration of garlic-derived nanoparticles (GNPs). We found that GNPs could significantly promote the proliferation and activation of endogenous γδ T cells in the intestine, leading to generation of large amount of interferon-γ (IFNγ). Moreover GNP-treated mice showed increased levels of chemokine CXCR3 in intestinal γδ T cells, which can drive their migration from the gut to the tumour environment. The translocation of γδ T cells and IFNγ from the intestine to extraintestinal subcutaneous tumours remodels the tumour immune microenvironment and synergizes with anti-PD-L1, inducing robust antitumour immunity. Our study delineates mechanistic insight into the complex gut–tumour interactome and provides an alternative approach for γδ T cell-based immunotherapy. γδ T cell-based immunotherapies are limited by the reduced expansion and activation of the T cells ex vivo. Here the authors show that garlic nanoparticles can activate IFNγ-producing γδ T cells directly in the intestine, before they translocate to extraintestinal tumours, where they can synergize with anti-PD-L1 therapy, inducing robust antitumour immunity.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.