{"title":"Spared nerve injury leads to reduced activity of neurons projecting from the ventrolateral periaqueductal gray to the locus coeruleus.","authors":"Wing Lam Yu, Zizhen Zhang, Gerald W Zamponi","doi":"10.1186/s13041-024-01121-6","DOIUrl":null,"url":null,"abstract":"<p><p>The ventrolateral periaqueductal gray (vlPAG) serves as a central hub for descending pain modulation. It receives upstream projections from the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (vlOFC), and projects downstream to the locus coeruleus (LC) and the rostroventral medulla (RVM). While much research has focused on upstream circuits and the LC-RVM connection, less is known about the PAG-LC circuit and its involvement in neuropathic pain. Here we examined the intrinsic electrophysiological properties of vlPAG-LC projecting neurons in Sham and spared nerve injury (SNI) operated mice. Injection of the retrotracer Cholera Toxin Subunit B (CTB-488) into the LC allowed the identification of LC-projecting neurons in the vlPAG. Electrophysiological recordings from CTB-488 positive cells revealed that both GABAergic and glutamatergic cells that project to the LC exhibited reduced intrinsic excitability after peripheral nerve injury. By contrast, CTB-488 negative cells did not exhibit alterations in firing properties after SNI surgery. An SNI-induced reduction of LC projecting cells was confirmed with c-fos labeling. Hence, SNI induces plasticity changes in the vlPAG that are consistent with a reduction in the descending modulation of pain signals.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01121-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ventrolateral periaqueductal gray (vlPAG) serves as a central hub for descending pain modulation. It receives upstream projections from the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (vlOFC), and projects downstream to the locus coeruleus (LC) and the rostroventral medulla (RVM). While much research has focused on upstream circuits and the LC-RVM connection, less is known about the PAG-LC circuit and its involvement in neuropathic pain. Here we examined the intrinsic electrophysiological properties of vlPAG-LC projecting neurons in Sham and spared nerve injury (SNI) operated mice. Injection of the retrotracer Cholera Toxin Subunit B (CTB-488) into the LC allowed the identification of LC-projecting neurons in the vlPAG. Electrophysiological recordings from CTB-488 positive cells revealed that both GABAergic and glutamatergic cells that project to the LC exhibited reduced intrinsic excitability after peripheral nerve injury. By contrast, CTB-488 negative cells did not exhibit alterations in firing properties after SNI surgery. An SNI-induced reduction of LC projecting cells was confirmed with c-fos labeling. Hence, SNI induces plasticity changes in the vlPAG that are consistent with a reduction in the descending modulation of pain signals.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.