Pranay Ladiwala , Xiangchen Cai , Harnish Mukesh Naik , Lateef Aliyu , Martin Schilling , Maciek R. Antoniewicz , Michael J. Betenbaugh
{"title":"Ala-Cys-Cys-Ala dipeptide dimer alleviates problematic cysteine and cystine levels in media formulations and enhances CHO cell growth and metabolism","authors":"Pranay Ladiwala , Xiangchen Cai , Harnish Mukesh Naik , Lateef Aliyu , Martin Schilling , Maciek R. Antoniewicz , Michael J. Betenbaugh","doi":"10.1016/j.ymben.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Cysteine and cystine are essential amino acids present in mammalian cell cultures. While contributing to biomass synthesis, recombinant protein production, and antioxidant defense mechanisms, cysteine poses a major challenge in media formulations owing to its poor stability and oxidation to cystine, a cysteine dimer. Due to its poor solubility, cystine can cause precipitation of feed media, formation of undesired products, and consequently, reduce cysteine bioavailability. In this study, a highly soluble cysteine containing dipeptide dimer, Ala-Cys-Cys-Ala (ACCA), was evaluated as a suitable alternative to cysteine and cystine in CHO cell cultures. Replacing cysteine and cystine in basal medium with ACCA did not sustain cell growth. However, addition of ACCA at 4 mM and 8 mM to basal medium containing cysteine and cystine boosted cell growth up to 15% and 27% in CHO-GS and CHO–K1 batch cell cultures respectively and led to a proportionate increase in IgG titer. <sup>13</sup>C-Metabolic flux analysis revealed that supplementation of ACCA reduced glycolytic fluxes by 20% leading to more efficient glucose metabolism in CHO–K1 cells. In fed-batch cultures, ACCA was able to replace cysteine and cystine in feed medium. Furthermore, supplementation of ACCA at high concentrations in basal medium eliminated the need for any cysteine equivalents in feed medium and increased cell densities and viabilities in fed-batch cultures without any significant impact on IgG charge variants. Taken together, this study demonstrates the potential of ACCA to improve CHO cell growth, productivity, and metabolism while also facilitating the formulation of cysteine- and cystine-free feed media. Such alternatives to cysteine and cystine will pave the way for enhanced biomanufacturing by increasing cell densities in culture and extending the storage of highly concentrated feed media as part of achieving intensified bioproduction processes.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"85 ","pages":"Pages 105-115"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000983/pdfft?md5=d351d74c482080c3366139047edce436&pid=1-s2.0-S1096717624000983-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000983","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cysteine and cystine are essential amino acids present in mammalian cell cultures. While contributing to biomass synthesis, recombinant protein production, and antioxidant defense mechanisms, cysteine poses a major challenge in media formulations owing to its poor stability and oxidation to cystine, a cysteine dimer. Due to its poor solubility, cystine can cause precipitation of feed media, formation of undesired products, and consequently, reduce cysteine bioavailability. In this study, a highly soluble cysteine containing dipeptide dimer, Ala-Cys-Cys-Ala (ACCA), was evaluated as a suitable alternative to cysteine and cystine in CHO cell cultures. Replacing cysteine and cystine in basal medium with ACCA did not sustain cell growth. However, addition of ACCA at 4 mM and 8 mM to basal medium containing cysteine and cystine boosted cell growth up to 15% and 27% in CHO-GS and CHO–K1 batch cell cultures respectively and led to a proportionate increase in IgG titer. 13C-Metabolic flux analysis revealed that supplementation of ACCA reduced glycolytic fluxes by 20% leading to more efficient glucose metabolism in CHO–K1 cells. In fed-batch cultures, ACCA was able to replace cysteine and cystine in feed medium. Furthermore, supplementation of ACCA at high concentrations in basal medium eliminated the need for any cysteine equivalents in feed medium and increased cell densities and viabilities in fed-batch cultures without any significant impact on IgG charge variants. Taken together, this study demonstrates the potential of ACCA to improve CHO cell growth, productivity, and metabolism while also facilitating the formulation of cysteine- and cystine-free feed media. Such alternatives to cysteine and cystine will pave the way for enhanced biomanufacturing by increasing cell densities in culture and extending the storage of highly concentrated feed media as part of achieving intensified bioproduction processes.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.