Evaluation of the biomechanics of Aramany class I obturators of different designs using numerical and experimental methods. Part I: Retention and associated stress
Mohammed A. Mousa BDSc, MFDs, MDSc, PhD , Adam Husein BDS, GradDipClinDent, DClinDent (Prosthodontics) , Mohamed I. El-Anwar BSc, MSc, PhD , Norwahida Yusoff BSc, MSc, PhD , Johari Yap Abdullah B.S. & I.T., GradDip ICT, MSc, PhD (Craniofacial Biology)
{"title":"Evaluation of the biomechanics of Aramany class I obturators of different designs using numerical and experimental methods. Part I: Retention and associated stress","authors":"Mohammed A. Mousa BDSc, MFDs, MDSc, PhD , Adam Husein BDS, GradDipClinDent, DClinDent (Prosthodontics) , Mohamed I. El-Anwar BSc, MSc, PhD , Norwahida Yusoff BSc, MSc, PhD , Johari Yap Abdullah B.S. & I.T., GradDip ICT, MSc, PhD (Craniofacial Biology)","doi":"10.1016/j.prosdent.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Statement of problem</h3><div>Studies on the biomechanics of obturators in the currently used designs of Aramany class I defect are lacking. Also, modifications of the designs presently used in unilateral palatal defects are needed to produce a prosthesis with more retention and less stress on the abutments.</div></div><div><h3>Purpose</h3><div>The purpose of part I of this study was to differentiate among Aramany class I obturators of 4 designs regarding retention and associated stress using numerical and experimental methods.</div></div><div><h3>Material and methods</h3><div><span>Four finite element models and 36 different base obturators were fabricated and divided into 9 acrylic resin bases retained with Adams clasps and 9 linear, 9 tripodal, and 9 fully tripodal design obturators from casts obtained from a scanned skull. After modification, the prostheses were fabricated on the casts obtained from a 3-dimensionally printed cast. The retention was evaluated, and the data were collected and analyzed using a statistical software program (α=.05). The displacement and associated stress in the assorted casts were compared by using 5-N displacing force at 3 points using </span>finite element analysis. The quantitative assessment was made by measuring the displacement and von Mises stress distribution on the prostheses and their supporting structures. The qualitative analysis was done by using a visual color mapping to depict stress location and intensity.</div></div><div><h3>Results</h3><div>No significant differences were found between fully tripodal (4.478 ±2.303 MPa) and tripodal obturators (4.478 ±2.286 MPa; <em>P</em>=.153), although fully tripodal showed more resistance to anterior displacement (4.522 ±0.979 and 3.553 ±1.58 MPa for fully tripodal and tripodal designs, respectively; <em>P</em>=.007), and tripodal obturators produced more resistance to middle displacement (5.441 ±1.778 and 2.784 ±0.432 MPa for tripodal and fully tripodal design respectively; <em>P</em>=.001). The fully tripodal obturator showed more retention (3.736 ±1.182 MPa) than the linear one (2.493 ±1.052 MPa; <em>P</em><span><span><span>=.001). The maxillary central incisor was the most stressed abutment, followed by the </span>lateral incisor, while the </span>second molar was the least.</span></div></div><div><h3>Conclusions</h3><div>Regarding retention, the fully tripodal obturator produces retention comparable with the tripodal and significantly more than the linear. Acrylic resin prostheses retained with Adams clasps may be similar to metal-based prostheses regarding retention and stress distribution on the supporting structures.</div></div>","PeriodicalId":16866,"journal":{"name":"Journal of Prosthetic Dentistry","volume":"132 5","pages":"Pages 1088.e1-1088.e8"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetic Dentistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022391324004694","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Statement of problem
Studies on the biomechanics of obturators in the currently used designs of Aramany class I defect are lacking. Also, modifications of the designs presently used in unilateral palatal defects are needed to produce a prosthesis with more retention and less stress on the abutments.
Purpose
The purpose of part I of this study was to differentiate among Aramany class I obturators of 4 designs regarding retention and associated stress using numerical and experimental methods.
Material and methods
Four finite element models and 36 different base obturators were fabricated and divided into 9 acrylic resin bases retained with Adams clasps and 9 linear, 9 tripodal, and 9 fully tripodal design obturators from casts obtained from a scanned skull. After modification, the prostheses were fabricated on the casts obtained from a 3-dimensionally printed cast. The retention was evaluated, and the data were collected and analyzed using a statistical software program (α=.05). The displacement and associated stress in the assorted casts were compared by using 5-N displacing force at 3 points using finite element analysis. The quantitative assessment was made by measuring the displacement and von Mises stress distribution on the prostheses and their supporting structures. The qualitative analysis was done by using a visual color mapping to depict stress location and intensity.
Results
No significant differences were found between fully tripodal (4.478 ±2.303 MPa) and tripodal obturators (4.478 ±2.286 MPa; P=.153), although fully tripodal showed more resistance to anterior displacement (4.522 ±0.979 and 3.553 ±1.58 MPa for fully tripodal and tripodal designs, respectively; P=.007), and tripodal obturators produced more resistance to middle displacement (5.441 ±1.778 and 2.784 ±0.432 MPa for tripodal and fully tripodal design respectively; P=.001). The fully tripodal obturator showed more retention (3.736 ±1.182 MPa) than the linear one (2.493 ±1.052 MPa; P=.001). The maxillary central incisor was the most stressed abutment, followed by the lateral incisor, while the second molar was the least.
Conclusions
Regarding retention, the fully tripodal obturator produces retention comparable with the tripodal and significantly more than the linear. Acrylic resin prostheses retained with Adams clasps may be similar to metal-based prostheses regarding retention and stress distribution on the supporting structures.
期刊介绍:
The Journal of Prosthetic Dentistry is the leading professional journal devoted exclusively to prosthetic and restorative dentistry. The Journal is the official publication for 24 leading U.S. international prosthodontic organizations. The monthly publication features timely, original peer-reviewed articles on the newest techniques, dental materials, and research findings. The Journal serves prosthodontists and dentists in advanced practice, and features color photos that illustrate many step-by-step procedures. The Journal of Prosthetic Dentistry is included in Index Medicus and CINAHL.