{"title":"Evaluation of Near-Infrared Laser Effects on 143B Cells: A System Biology Approach.","authors":"Mohammad Rostami Nejad, Masoumeh Farahani, Zahra Razzaghi, Babak Arjmand, Fatemeh Montazer, Fatemeh Bandarian, Farideh Razi, Mostafa Rezaei Tavirani","doi":"10.34172/jlms.2024.14","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Photothermal therapy (PTT) by using a near-infrared (NIR) laser, as a successful treatment of cancer, has attracted extensive attention of researchers. Its advantages as a noninvasive and suitable method have been confirmed. Discovery of the NIR laser molecular mechanism at the cellular level via system biology assessment to identify the crucial targeted genes is the aim of this study. <b>Methods:</b> RNA-seq series of six samples were retrieved from Gene Expression Omnibus (GEO) and pre-evaluated by the GEO2R program for more analysis. The significant differentially expressed genes (DEGs) were determined and studied via gene expression analysis, protein-protein interaction (PPI) network assessment, action map evaluation, and gene ontology enrichment. <b>Results:</b> HSPA5, DDIT3, TRIB3, PTGS2, HMOX1, ASNS, GDF15, SLC7A11, and SQSTM1 were identified as central genes. Comparing the central genes and the determined crucial genes via gene expression analysis, actin map results, and gene ontology enrichment led to the introduction of HSPA5, DDIT3, PTGS2, HMOX1, and GDF15 as critical genes in response to the NIR laser. <b>Conclusion:</b> The results indicated that the principle biological process \"Endoplasmic reticulum unfolded protein response\" and HSPA5, DDIT3, PTGS2, HMOX1, and GDF15 are the crucial targets of the NIR laser. The results also showed that the NIR laser induces stress conditions in the irradiated cells.</p>","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":"15 ","pages":"e14"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Photothermal therapy (PTT) by using a near-infrared (NIR) laser, as a successful treatment of cancer, has attracted extensive attention of researchers. Its advantages as a noninvasive and suitable method have been confirmed. Discovery of the NIR laser molecular mechanism at the cellular level via system biology assessment to identify the crucial targeted genes is the aim of this study. Methods: RNA-seq series of six samples were retrieved from Gene Expression Omnibus (GEO) and pre-evaluated by the GEO2R program for more analysis. The significant differentially expressed genes (DEGs) were determined and studied via gene expression analysis, protein-protein interaction (PPI) network assessment, action map evaluation, and gene ontology enrichment. Results: HSPA5, DDIT3, TRIB3, PTGS2, HMOX1, ASNS, GDF15, SLC7A11, and SQSTM1 were identified as central genes. Comparing the central genes and the determined crucial genes via gene expression analysis, actin map results, and gene ontology enrichment led to the introduction of HSPA5, DDIT3, PTGS2, HMOX1, and GDF15 as critical genes in response to the NIR laser. Conclusion: The results indicated that the principle biological process "Endoplasmic reticulum unfolded protein response" and HSPA5, DDIT3, PTGS2, HMOX1, and GDF15 are the crucial targets of the NIR laser. The results also showed that the NIR laser induces stress conditions in the irradiated cells.
期刊介绍:
The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)