Crystal Structures of DNA-bound Fish IRF10 and IRF11 Reveal the Determinants of IFN Regulation.

IF 3.6 3区 医学 Q2 IMMUNOLOGY
Zhao-Xi Wang, Bin Liu, Haizhou Xie, Xin Liu, Xiangliang Li, Fuqiang Shi, Songying Ouyang, Yong-An Zhang
{"title":"Crystal Structures of DNA-bound Fish IRF10 and IRF11 Reveal the Determinants of IFN Regulation.","authors":"Zhao-Xi Wang, Bin Liu, Haizhou Xie, Xin Liu, Xiangliang Li, Fuqiang Shi, Songying Ouyang, Yong-An Zhang","doi":"10.4049/jimmunol.2300414","DOIUrl":null,"url":null,"abstract":"<p><p>IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":"743-752"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4049/jimmunol.2300414","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.

DNA 结合鱼 IRF10 和 IRF11 的晶体结构揭示了 IFN 调节的决定因素。
IFN 调节因子(IRFs)是一种转录因子,可介导宿主防御病原体的平衡机制。除了在脊椎动物中保守的 IRF1-9 外,远洋鱼类还有另外两个 IRF,即 IRF10 和 IRF11。在斑马鱼(Danio rerio)中,IRF10抑制IFNφ1和IFNφ3的表达,而IRF11则起相反的作用。本研究发现,IRF10能显著抑制IFN11诱导的IFNφ1和IFNφ3的表达,从而协同调控I型IFN的表达。为了阐明IRF10和IRF11在I型IFN表达中的协同调控机制,我们测定并分析了斑马鱼IRF10和IRF11与DNA结合的DNA结合域(DBD)以及IRF11 DBD的晶体结构。详细阐述了IRF10-DBD和IRF11-DBD与DNA骨架的相互作用。进一步分析表明,IRF10和IRF11与IFNφ1和IFNφ3启动子的IFN敏感反应元件具有相同的结合模式和相似的亲和力。因此,IRF10 可通过与 IFN 敏感的反应元件竞争性结合,作为 IRF11 的控制因子,核心调节宿主的 IFN 反应。因此,与哺乳动物中的IRF1和IRF2类似,IRF10和IRF11在鱼类中作为另一对负向和正向调节因子平衡抗病毒反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信